

Body Fitted Coordinate Systems-I

- We have seen a few methods to solve partial differential equations in Cartesian Domain
- However, in many practical instances, the systems are irregular and complex
- Solution in such cases would require special considerations
- If we use Cartesian system of equations, we get into difficulty of setting the boundary conditions accurately
- If we can develop body fitted coordinate systems, the substitution of boundary conditions become simple and accurate

^{3/19} Body Fitted Coordinate Systems-II
 If we used a Cartesian system of coordinates, then representing the domain would require Staircasing
 The representation of Boundary conditions becomes complex and the boundary nodes have to be tagged

Representing Neumann boundary conditions can be complex and inaccurate

easy and accurate
A classic case of boundary fitted coordinate system is the polar coordinate for cylinders (r-θ)

Body Fitted Coordinate Systems-IV

- We know from our earlier study in heat transfer and fluid flow that the governing equations also have to be transformed for the modified coordinate systems and it will have additional terms
- ➢ For instance the governing equation

$$\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) = 0$$

Transforms into

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 T}{\partial \theta^2} = 0$$

Body Fitted Coordinate Systems-V

- The transformed equations when solved in the new coordinate system would provide solutions in that coordinate system
- Thus, to locate the physical location of the point in the x-y coordinate system from the ξ and η coordinate system, relations will be needed
- > Thus, we need three aspects
 - 1. Transform the governing equations and boundary conditions
 - 2. Obtain the solutions in the transformed domain
 - 3. Get the solution back in the physical domain

^{8/19} Transformation Rules-II

$$dx = \frac{\partial x}{\partial \xi} d\xi + \frac{\partial x}{\partial \eta} d\eta \qquad dy = \frac{\partial y}{\partial \xi} d\xi + \frac{\partial y}{\partial \eta} d\eta$$

 $\Rightarrow \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{bmatrix} \begin{bmatrix} d\xi \\ d\eta \end{bmatrix} = \begin{bmatrix} dx \\ dy \end{bmatrix}$
 \Rightarrow For a given dx and dy, d\xi and dn
will be unique, if
 $\Rightarrow I = x_{\xi}y_{\eta} - x_{\eta}y_{\xi} \neq 0$
 $\begin{vmatrix} \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{vmatrix} \neq 0$

^{11/19} Transformation Relations-II
$(\mathbf{x} \mathbf{z}^{\mathbf{x}} \mathbf{z}^{x$
$= \left(\frac{\partial I}{\partial \xi}\frac{\partial \zeta}{\partial x} + \frac{\partial I}{\partial \eta}\frac{\partial \eta}{\partial x}\right)dx + \left(\frac{\partial I}{\partial \xi}\frac{\partial \zeta}{\partial y} + \frac{\partial I}{\partial \eta}\frac{\partial \eta}{\partial y}\right)dy 2$
Comparing Eqs. (1) and (2) we can write,
$\frac{\partial T}{\partial x} = \left(\frac{\partial T}{\partial \xi}\frac{\partial \xi}{\partial x} + \frac{\partial T}{\partial \eta}\frac{\partial \eta}{\partial x}\right) and \frac{\partial T}{\partial y} = \left(\frac{\partial T}{\partial \xi}\frac{\partial \xi}{\partial y} + \frac{\partial T}{\partial \eta}\frac{\partial \eta}{\partial y}\right)$
Thus we can write the following transformation
$\frac{\partial(1)}{\partial x} = \left(\frac{\partial\xi}{\partial x}\frac{\partial(1)}{\partial\xi} + \frac{\partial\eta}{\partial x}\frac{\partial(1)}{\partial\eta}\right) \text{ and } \frac{\partial(1)}{\partial y} = \left(\frac{\partial\xi}{\partial y}\frac{\partial(1)}{\partial\xi} + \frac{\partial\eta}{\partial y}\frac{\partial(1)}{\partial\eta}\right)$

12/10	
► We can proceed similarly and write	
$\frac{\partial^2 T}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial \xi}{\partial x} \frac{\partial T}{\partial \xi} + \frac{\partial \eta}{\partial x} \frac{\partial T}{\partial \eta} \right)$	
$=\frac{\partial^2 \xi}{\partial x^2} \frac{\partial T}{\partial \xi} + \frac{\partial \xi}{\partial x} \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial \xi}\right) + \frac{\partial^2 \eta}{\partial x^2} \frac{\partial T}{\partial \eta} + \frac{\partial \eta}{\partial x} \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial \eta}\right)$	3
$\frac{\partial \xi}{\partial x} \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial \xi} \right) = \left(\frac{\partial \xi}{\partial x} \right)^2 \frac{\partial^2 T}{\partial \xi^2} + \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial x} \frac{\partial^2 T}{\partial \eta \partial \xi}$	4
$\frac{\partial \eta}{\partial x} \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial \eta} \right) = \frac{\partial \eta}{\partial x} \frac{\partial \xi}{\partial x} \frac{\partial^2 T}{\partial \eta \partial \xi} + \left(\frac{\partial \eta}{\partial x} \right)^2 \frac{\partial^2 T}{\partial \eta^2}$	5

^{13/19} Transformation Relations-IV
From Eqs. (3), (4) and (5), we can write
$\frac{\partial^2 T}{\partial x^2} = \left(\frac{\partial \xi}{\partial x}\right)^2 \frac{\partial^2 T}{\partial \xi^2} + 2 \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial x} \left(\frac{\partial^2 T}{\partial \xi \partial \eta}\right)$
$+\left(\frac{\partial\eta}{\partial x}\right)^2\frac{\partial^2 T}{\partial\eta^2}+\frac{\partial^2\xi}{\partial x^2}\frac{\partial T}{\partial\xi}+\frac{\partial^2\eta}{\partial x^2}\frac{\partial T}{\partial\eta}$
Proceeding similarly, we can write
$\frac{\partial^2 T}{\partial y^2} = \left(\frac{\partial \xi}{\partial y}\right)^2 \frac{\partial^2 T}{\partial \xi^2} + 2\frac{\partial \xi}{\partial y}\frac{\partial \eta}{\partial y}\left(\frac{\partial^2 T}{\partial \xi \partial \eta}\right)$
$+\left(\frac{\partial\eta}{\partial y}\right)^2\frac{\partial^2 T}{\partial\eta^2}+\frac{\partial^2\xi}{\partial y^2}\frac{\partial T}{\partial\xi}+\frac{\partial^2\eta}{\partial y^2}\frac{\partial T}{\partial\eta}$

Illustrative Investigation-I			
Let us consider an illustrative example with algebraic transformation			
Consider the transformation			
$r = \xi = \sqrt{x^2 + y^2}, \theta = \eta = \tan^{-1}\frac{y}{x}$			
The inverse transformation relations are			
$x = rCos\theta, y = rSin\theta$			
$\frac{\partial \xi}{\partial x} = \frac{\partial (x^2 + y^2)^{1/2}}{\partial x} = \frac{2x}{2(x^2 + y^2)^{1/2}} = \frac{x}{r} = \cos\theta$			
$\frac{\partial \xi}{\partial y} = \frac{\partial (x^2 + y^2)^{1/2}}{\partial y} = \frac{2y}{2(x^2 + y^2)^{1/2}} = \frac{y}{r} = \cos\theta$			

^{16/19} Illustrative Investigation-II
$\frac{\partial \eta}{\partial x} = \frac{Tan^{-1}(y/x)}{\partial x} = \frac{1}{(1+(y/x))^2} \left(-\frac{y}{x^2}\right) = \frac{-y}{x^2+y^2} =$
$\frac{-y}{r^2} = \frac{-Sin\theta}{r}$
$\frac{\partial \eta}{\partial y} = \frac{Tan^{-1}(y/x)}{\partial x} = \frac{1}{(1+(y/x)^2)} \left(\frac{1}{x}\right) = \frac{x}{x^2 + y^2} =$
$\frac{x}{r^2} = \frac{\cos\theta}{r}$

17/19	Illus	strative	e Inv	estig	ation-II	I
$\frac{\partial^2 \xi}{\partial x^2} =$	$\frac{\partial}{\partial x}\frac{\partial\xi}{\partial x} =$	$=\frac{\partial Cos\theta}{\partial x}=$	–Sinθ	$\frac{\partial \theta}{\partial x} = -S$	$in\theta \frac{-Sin\theta}{r}$	$=\frac{Sin^2\theta}{r}$
$\frac{\partial^2 \xi}{\partial y^2} =$	$= \frac{\partial}{\partial y} \frac{\partial \xi}{\partial y} =$	$=\frac{\partial Sin\theta}{\partial y}=$	$\cos\theta \frac{1}{6}$	$\frac{\partial \theta}{\partial y} = Cos$	$\theta \frac{\cos \theta}{r} = 0$	$\frac{\cos^2\theta}{r}$
$\frac{\partial^2 \eta}{\partial x^2} =$	$\frac{\partial}{\partial x} \left(\frac{\partial \eta}{\partial x} \right)$	$=\frac{\partial}{\partial x}\left(\frac{-S}{h}\right)$	$\left(\frac{in\theta}{r}\right) = \frac{1}{r}$	$\frac{-1}{r}Cos\theta$	$\frac{\partial \theta}{\partial x} + \frac{-1}{r^2} (-x)$	$Sin\theta)\frac{\partial r}{\partial x}$
	=	$\frac{-\cos\theta}{r}$	$\frac{\sin\theta}{r}$ +	$\frac{(Sin\theta)}{r^2}Cd$	$\cos\theta = \frac{(2Sin\theta)}{(2Sin\theta)}$	$\frac{\theta \cos \theta}{r^2}$

Illustrative Investigation-IV
$\frac{\partial^2 \eta}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial \eta}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\cos \theta}{r} \right) = \frac{1}{r} \left(-\sin \theta \right) \frac{\partial \theta}{\partial y} + \frac{-1}{r^2} \left(\cos \theta \right) \frac{\partial r}{\partial y}$
$=\frac{-\sin\theta}{r}\frac{\cos\theta}{r}+\frac{(-\cos\theta)}{r^2}\sin\theta=\frac{(-2\sin\theta\cos\theta)}{r^2}$
$a = \left(\frac{\partial \xi}{\partial x}\right)^2 + \left(\frac{\partial \xi}{\partial y}\right)^2 = \cos^2\theta + \sin^2\theta = 1$
$0.5b = \frac{\partial \xi}{\partial x}\frac{\partial \eta}{\partial x} + \frac{\partial \xi}{\partial y}\frac{\partial \eta}{\partial y} = \cos\theta\frac{-\sin\theta}{r} + \sin\theta\frac{-\cos\theta}{r} = 0$
$c = \left(\frac{\partial \eta}{\partial x}\right)^2 + \left(\frac{\partial \eta}{\partial y}\right)^2 = \frac{Sin^2\theta}{r^2} + \frac{Cos^2\theta}{r^2} = \frac{1}{r^2}$

Illustrative Investigation-V
$d = \frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} = \frac{\sin^2 \theta}{r} + \frac{\cos^2 \theta}{r} = \frac{1}{r}$
$e = \frac{\partial^2 \eta}{\partial x^2} + \frac{\partial^2 \eta}{\partial y^2} = \frac{2Sin\theta Cos\theta}{r^2} - \frac{2Sin\theta Cos\theta}{r^2} = 0$
Thus we can write
$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{1}{r} \frac{\partial T}{\partial r}$