

Grid Generation-I

$>$ We had looked at the transformation of the governing equation
$>$ If we have an algebraic transformation between $\xi-\eta$ and $x-y$ such as the one we saw in the last lecture the problem is straight forward
$>$ For instance consider the simple case of a trapezoidal domain as shown
$>$ We can define the following

$$
\xi=\frac{x}{L}, \quad \eta=\frac{y}{y_{t}}
$$

$$
y_{t}=H_{1}+\frac{H_{2}-H_{1}}{L} x
$$

3/7 Metric Relations-I
 $$
x=L \xi \quad y=\eta\left(H_{1}+\frac{H_{2}-H_{1}}{L} L \xi\right)=\eta\left(H_{1}+\left(H_{2}-H_{1}\right) \xi\right)
$$

$>$ The metric relations can be found out as

$$
\begin{aligned}
\xi_{x}= & \frac{1}{L} \quad \xi_{y}=0 \quad \xi_{x x}=0 \quad \xi_{y y}=0 \\
\eta_{x} & =-\frac{y}{\left(H_{1}+\frac{H_{2}-H_{1}}{L} x\right)^{2}} \frac{H_{2}-H_{1}}{L}
\end{aligned}
$$

Metric Relations-II

$$
\begin{gathered}
\eta_{x x}=2 \frac{y}{\left(H_{1}+\frac{H_{2}-H_{1}}{L} x\right)^{3}}\left(\frac{H_{2}-H_{1}}{L}\right)^{2} \\
\eta_{y}=-\frac{1}{\left(H_{1}+\frac{H_{2}-H_{1}}{L} x\right)} \quad \eta_{y y}=0
\end{gathered}
$$

Metric Relations-III

Thus we can compute a, b, c, d and e at every point By knowing the x and y at every (ξ, η) point in the computational plane.
$>$ Now the solution can be obtained by appropriate finite difference formulation
$>$ Often the inverse transformation is difficult to obtain and hence the entire grid generation is done numerically
$>$ The metrics have also to be determined numerically. However, in these cases, rather than $\xi_{x}, \xi_{y}, \eta_{x}$ and η_{y} we make use of $x_{\xi}, x_{\eta}, y_{\xi}, y_{\eta}$ are used. We shall now relate these in the next slides

$$
\left.\begin{gathered}
\text { Metric Relations-V } \\
d \xi=\xi_{x} d x+\xi_{y} d y \quad \Rightarrow \text { along } d y=0 \frac{d \xi}{d x}=\xi_{x} \\
\xi_{x}=\left.\frac{d \xi}{d x}\right|_{d y=0}=\frac{1}{d x} \frac{\left|\begin{array}{cc}
d x & x_{\eta} \\
0 & y_{\eta}
\end{array}\right|=y_{\eta} J \quad \text { where } J=\frac{1}{x_{\xi} y_{\eta}-x_{\eta} y_{\xi}}}{\left|\begin{array}{ll}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right|} \\
\xi_{y}=\left.\frac{d \xi}{d y}\right|_{d x=0}=\frac{1}{d y}\left|\begin{array}{cc}
0 & x_{\eta} \\
d y & y_{\eta}
\end{array}\right| \\
\left|\begin{array}{ll}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right|
\end{gathered} \right\rvert\,=-x_{\eta} J .
$$

Metric Relations-IV

$$
\begin{aligned}
d x & =x_{\xi} d \xi+x_{\eta} d \eta \quad d y=y_{\xi} d \xi+y_{\eta} d \eta \\
& \Rightarrow\left[\begin{array}{ll}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right]\left\{\begin{array}{l}
d \xi \\
d \eta
\end{array}\right\}=\left\{\begin{array}{c}
d x \\
d y
\end{array}\right\}
\end{aligned}
$$

$>$ We can compute $\mathrm{d} \xi$ as follows

$$
d \xi=\frac{\left|\begin{array}{cc}
d x & x_{\eta} \\
d y & y_{\eta}
\end{array}\right|}{\left|\begin{array}{cc}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right|}
$$

${ }^{8 / 17} \quad$ Metric Relations-VI

$>$ Similarly we can get

$$
\begin{aligned}
& \eta_{x}=\left.\frac{d \eta}{d x}\right|_{d y=0}=\frac{1}{d y} \frac{\left|\begin{array}{cc}
x_{\xi} & d x \\
y_{\xi} & 0
\end{array}\right|}{\left|\begin{array}{cc}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right|}=-y_{\xi} J \\
& \eta_{y}=\left.\frac{d \eta}{d y}\right|_{d x=0}=\frac{1}{d y} \frac{\left|\begin{array}{cc}
x_{\xi} & 0 \\
y_{\xi} & d y
\end{array}\right|}{\left|\begin{array}{cc}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right|}=x_{\xi} J
\end{aligned}
$$

Thus we have established the relationships

Grid Generation-I

$>$ Our objective is to obtain a body fitted grid for an object whose boundary coordinates are known in terms of x and y
$>$ We shall arbitrarily divide the body into four boundaries such as the one shown
$>$ The objective is to determine metrics at every point as well as the relationship between $x-y$ and ξ, η

$>$ We have just seen that the metrics can be determined, if $x_{\xi}, x_{n}, y_{\xi}, y_{n}$ are known at every (ξ, η) point.

Governing Equations for Grids-II

$$
\begin{gathered}
b=2 \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial x}+\frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial y} \quad \Rightarrow b=2\left(y_{\xi} y_{\eta}+x_{\xi} x_{\eta}\right) J^{2} \\
c=\left(\frac{\partial \eta}{\partial x}\right)^{2}+\left(\frac{\partial \eta}{\partial y}\right)^{2} \quad c=\left(x_{\xi}^{2}+y_{\xi}^{2}\right) J^{2} \\
d=\frac{\partial^{2} \xi}{\partial x^{2}}+\frac{\partial^{2} \xi}{\partial y^{2}} \\
e=\frac{\partial^{2} \eta}{\partial x^{2}}+\frac{\partial^{2} \eta}{\partial y^{2}}
\end{gathered}
$$

Governing Equations for Grids-I

$>$ We are now going to seek to find some governing equations for x and y in the interior, whose solution will give us (x, y) for the known (ξ, η)
$>$ In the previous lecture we had shown

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=a \frac{\partial^{2} f}{\partial \xi^{2}}+b \frac{\partial^{2} f}{\partial \xi \partial \eta}+c \frac{\partial^{2} f}{\partial \eta^{2}}+d \frac{\partial f}{\partial \xi}+e \frac{\partial f}{\partial \eta}
$$

$>$ Where,
$a=\left(\frac{\partial \xi}{\partial x}\right)^{2}+\left(\frac{\partial \xi}{\partial y}\right)^{2} \Rightarrow a=\left(J y_{\eta}\right)^{2}+\left(-J x_{\eta}\right)^{2}$

Governing Equations for Grids-III

$>$ Some of the features that we desire in the grid mapping are
$>$ Continuity
> Uniqueness
> Maxima and Minima at the boundaries

- Solutions of Laplace equation satisfy these objectives
$>$ Hence, it is very common to generate grids that satisfy Laplace equation. These are called elliptic grids.
> These grids are designed to satisfy

$$
\nabla^{2} \xi=0, \quad \nabla^{2} \eta=0
$$

Governing Equations for Grids-IV

$>$ Thus from the previous slide, we can write

$$
d=0, e=0
$$

$>$ If we substitute x for f we can get

$$
\frac{\partial^{2} x}{\partial x^{2}}+\frac{\partial^{2} x}{\partial y^{2}}=0=a \frac{\partial^{2} x}{\partial \xi^{2}}+b \frac{\partial^{2} x}{\partial \xi \partial \eta}+c \frac{\partial^{2} x}{\partial \eta^{2}}
$$

$>$ Similarly, if we substitute y for x, we get

$$
\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}=0=a \frac{\partial^{2} y}{\partial \xi^{2}}+b \frac{\partial^{2} y}{\partial \xi \partial \eta}+c \frac{\partial^{2} y}{\partial \eta^{2}}
$$

Governing Equations for Grids-V

$>$ Thus the final governing equations for x and y are

$$
\begin{aligned}
& a \frac{\partial^{2} x}{\partial \xi^{2}}+b \frac{\partial^{2} x}{\partial \xi \partial \eta}+c \frac{\partial^{2} x}{\partial \eta^{2}}=0 \\
& a \frac{\partial^{2} y}{\partial \xi^{2}}+b \frac{\partial^{2} y}{\partial \xi \partial}+c \frac{\partial^{2} y}{\partial \eta^{2}}=0
\end{aligned}
$$

$>$ The overall steps for solving for a complex domain can be summarised as follows

Steps for Solution-I

Divide the object into four convenient boundaries
$>$ The maxima and minima for ξ, η are set typically to 0 and 1
$>$ Select NXN points on the boundaries. This can be done to the taste of the user. These can be uniformly or non-uniformly distributed
$>$ The values of η on $\xi=$ constant and the values of ξ on $\eta=$ constant boundaries are now assigned

$>$ The logical choice is to uniformly increase from 0 to 1 .

Steps for Solution-II

$>$ For these (ξ, η) points on the boundaries, the physical values of (x, y) are assigned
$>$ The values of (x, y) for the interior (ξ, η) points are guessed. Initial values can be the linearly interpolated values from the boundary
$>$ The governing equations for x and y is solved as a boundary value problem simultaneously one iteration at a time. For this the values of a, b, c and J are estimated from the guessed values of x and y
$>$ After one complete sweep of x and y, update the values of a, b and c. Under relaxation may be required to keep the iterations converge
> Iterate until convergence is obtained.

Steps for Solution-III

> Once the grid is solved for solve for T

$$
a \frac{\partial^{2} T}{\partial \xi^{2}}+2 b\left(\frac{\partial^{2} T}{\partial \xi \partial \eta}\right)+c \frac{\partial^{2} f}{\partial \eta^{2}}=0
$$

> The values of a, b and c are the ones already evaluated for the grid. Note d and e are 0 due to the choice of the grid.
> The boundary conditions for T will depend on the problem solved.

