

Review

\square We had seen the following methods
\square Bisection Method
Method of False Position
\square Secant Method

- Newton's Method
\square Fixed Point Iteration
We shall see the relative performances of three of these methods

Fixed Point Iteration-I

\square Our recursive relation was

$$
\begin{equation*}
x_{n+1}=g\left(x_{n}\right) \tag{1}
\end{equation*}
$$

- If α is our root then

$$
\begin{equation*}
\alpha=g(\alpha) \tag{2}
\end{equation*}
$$

\square Eqs. (1) and (2) imply that

$$
\begin{equation*}
x_{n+1}-\alpha=g\left(x_{n}\right)-g(\alpha) \tag{3}
\end{equation*}
$$

\square Defining the error at any level i as

$$
\begin{equation*}
e_{i}=x_{i}-\alpha \tag{4}
\end{equation*}
$$

Fixed Point Iteration-II

ㅁ. Eq. (3) can be written as
$e_{n+1}=g\left(\alpha+e_{n}\right)-g(\alpha)$
$=g(\alpha)+e_{n} g^{\prime}(\alpha)+\frac{e_{n}{ }^{2}}{2} g^{\prime \prime}(\alpha)+\ldots-g(\alpha)$
$=e_{n} g^{\prime}(\xi) \quad$ Using Mean Value Theorem
Where ξ is such that it lies between x_{n} and α
$\Rightarrow \frac{e_{n+1}}{e_{n}}=g^{\prime}(\xi)$

Fixed Point Iteration-III

- For the method to converge,

$$
\Rightarrow\left|\frac{e_{n+1}}{e_{n}}\right|<1 \text { or }\left|g^{\prime}(\alpha)\right|<1
$$

\square In fact this must be true in its entire path of initial guess all the way to the route, as otherwise, it can be thrown out anywhere
\square Since $e_{n+1}=c e_{n}$ the method is said to have linear convergence near the root.
\square It implies that the error will decrease linearly in the error-number of iteration plot

Newton's Method-I

\square In this case our recursive relation was

$$
\begin{gathered}
\Rightarrow x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right) \\
e_{n+1}+\alpha=e_{n}+\alpha-\frac{f\left(x_{n}\right)-f(\alpha)}{f^{\prime}\left(x_{n}\right)} \\
\text { Note that } f(\alpha)=0 \text { by definition } \\
e_{n+1}+\not \not \subset=e_{n}+\not \partial-\frac{f\left(x_{n}\right)-f\left(x_{n}-e_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{gathered}
$$

Secant Method-I

- The error analysis for this method is tedious but very illustrative of the power law techniqueIn this case our recursive relation was

$$
\Rightarrow x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}}}
$$

Secant Method-II

$$
\begin{aligned}
& \Rightarrow e_{n+1}+\hat{\alpha}=e_{n}+\hat{\alpha}-\frac{\left(x_{n}-x_{n-1}\right) f\left(\alpha+e_{n}\right)}{f\left(\alpha+e_{n}\right)-f\left(\alpha+e_{n-1}\right)} \\
& \Rightarrow e_{n+1}=e_{n} \\
& -\frac{\left(e_{n}-e_{n-1}\right)\left(f(\alpha)+e_{n} f^{\prime}(\alpha)+\left(e_{n}^{2} / 2\right) f^{\prime \prime}(\alpha)\right)}{f(\not \alpha)+e_{n} f^{\prime}(\alpha)+\left(e_{n}^{2} / 2\right) f^{\prime \prime}(\alpha)} \\
& \quad-\left(f(\alpha)+e_{n-1} f^{\prime}(\alpha)+\left(e_{n-1}^{2} / 2\right) f^{\prime \prime}(\alpha)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Secant Method-III } \\
& \Rightarrow \begin{array}{l}
e_{n+1}=e_{n} \\
- \\
\left(e_{n}-e_{n-1}\right)\left(e_{n} f^{\prime}(\alpha)+\left(e_{n}^{2} / 2\right) f^{\prime \prime}(\alpha)\right) \\
\left(e_{n}=e_{n-1}\right) f^{\prime}(\alpha)+\frac{e_{n}^{2}-e_{n-1}^{2}}{2} f^{\prime \prime}(\alpha) \\
e_{n}+e_{n+1} \\
\Rightarrow e_{n+1}=e_{n}-\frac{e_{n}+\frac{e_{n}^{2}}{2} \frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}}{1+\frac{e_{n}+e_{n-1}}{2} \frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}}
\end{array}
\end{aligned}
$$

Secant Method-IV

$$
\begin{equation*}
\Rightarrow e_{n+1}=\frac{e_{n} e_{n-1}}{2} \frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)} \tag{1}
\end{equation*}
$$

\square If we assume that the method is of order p, we can write

$$
e_{n+1}=a e_{n}^{p} \text { and }
$$

- Eq.(1) can now be written as

$$
\Rightarrow a e_{n}^{p}=\frac{e_{n}}{2}\left(\frac{e_{n}}{a}\right)^{\frac{1}{p}} \frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}
$$

Secant Method-VI

- By reorganising terms, we get

$$
\Rightarrow a^{l+\frac{l}{p}} e_{n}^{p}=\frac{1}{2} e_{n}^{l+\frac{l}{p}} \frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}
$$

- Since the power of n has to be homogeneous, we can write

$$
\begin{aligned}
p=1+\frac{1}{p} & \Rightarrow p^{2}-p-1=0 \\
\Rightarrow p & =\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

Continuation Method

- Many times, the equation may be difficult to solve as the root is not known and the function is difficult
. A method called continuation method is very useful
- For an arbitrary x_{0}, we can say that x_{0} is the root of the function $f(x)-f\left(x_{0}\right)$
- If we now define our function as $F(x)=f(x)-\beta f\left(x_{0}\right)$, and use x_{0} as the guess for β $=0.9$, we can find the root because the guess is good
- We can proceed in this manner successively by reducing β to 0 , root of $f(x)$ can be found 15/15

Secant Method-VII

I If $p<1$, the method will diverge. Thus when the method converges, $p>1$, which leads to

$$
p=\frac{1+\sqrt{5}}{2}=1.62
$$Thus the method is inferior to Newton's method, but needs only one function evaluation at a step and hence is competitive

