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Review

� We had seen the following methods

� Bisection Method

� Method of False Position

� Secant Method

� Newton’s Method

� Fixed Point Iteration

� We shall see the relative performances of 
three of these methods
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Fixed Point Iteration-I

� Our recursive relation was
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� If α is our root then
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� Eqs. (1) and (2) imply that
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� Defining the error at any level i as
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� Eq. (3) can be written as
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Fixed Point Iteration-II

)(g...)(g
2

e
)(ge)(g

2

n
n

αααα −+′′+′+=

)(ge
n

ξ′= Using Mean Value Theorem

Where ξ is such that it lies between xn and α
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Fixed Point Iteration-III

� For the method to converge,
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� In fact this must be true in its entire path of 
initial guess all the way to the route, as 
otherwise, it can be thrown out anywhere

� Since en+1 = c en the method is said to have 
linear convergence near the root.

� It implies that the error will decrease linearly 
in the error-number of iteration plot
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Newton’s Method-I

� In this case our recursive relation was
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Note that f(α) = 0 by definition
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Newton’s Method-II
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� For the method to converge,
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Secant Method-I

� The error analysis for this method is 
tedious but very illustrative of the 
power law technique

� In this case our recursive relation was
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Secant Method-II
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Secant Method-III

Secant Method-IV

� As x approaches the root,
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Secant Method-IV

� If we assume that the method is of order p, we 
can write

p

n1n aee =+
p

1nn aee −=and
p

1

n
1n

a

e
e 








=⇒ −

)(f

)(f

2

ee
e 1nn

1n α

α

′

′′
=⇒ −

+ (1)

� Eq.(1) can now be written as
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Secant Method-VI

� By reorganising terms, we get
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� Since the power of n has to be homogeneous, 
we can write
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Secant Method-VII
� If p < 1, the method will diverge. Thus when the 

method converges, p > 1, which leads to
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� Thus the method is inferior to Newton’s method, 
but needs only one function evaluation at a step 
and hence is competitive
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Continuation Method

� Many times, the equation may be difficult to solve 
as the root is not known and the function is 
difficult

� A method called continuation method is very 
useful

� For an arbitrary x0, we can say that x0 is the root 
of the function f(x)-f(x0)

� If we now define our function as                        
F(x) = f(x) – β f(x0), and use x0 as the guess for β
= 0.9, we can find the root because the guess is 
good

� We can proceed in this manner successively by 
reducing β to 0, root of f(x) can be found 15/15


