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Review-I 

� Began the Solution of Linear equations 

� The motivation was from several 
engineering applications 

� Understood the definitions of diagonal, 
tri-diagonal, upper triangular and lower 
triangular matrices 

� Understood the logic for solution of 
equations when the coefficient  matrix is 
either diagonal, upper triangular or 
lower triangular 
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Review-II 

� Began with the direct solution of linear 
equations 

� Studied Gauss Elimination 

� Understood that Pivoting improves accuracy. 

� Studied Gauss Jordan method and 
understood that it can be used to compute 
inverse 
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L-U Decomposition 

� If the problem has to be repeated with several 
source vectors for the same coefficient vector, 
L-U decomposition is recommended 

[ ] [ ][ ]ULA =

� Such a decomposition speeds up calculation 

� In general two methods are available 

� Crout’s Decomposition 

� Dolittle’s Decomposition 
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Crout’s Decomposition 
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� a11= l11 ,  a21= l21 ,  a31= l31  
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� a12= l11 u12  ,  a13= l11 u13   

� a22= l21 u12 + l22  , a32= l31 u12 + l32  

� a23= l21 u13 + l22 u23    

� a33= l31 u13 + l32 u23 +  l33 
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li1 = ai1 , for  i  = 1, n 

u1j = a1j / l11 , for j = 2,n 
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( for  i  = j +1, n ) 

Logic for Crout’s Method 
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[ ]{ } { } [ ][ ]{ } { }bxULbxA =⇒=

� Introducing  [ ]{ } { }dxU =

�This implies  [ ]{ } { }bdL =

�Since [L] and {b} are known, {d} can be 

found from Eq.(2)by forward sweep 

�Once {d} is found out, {x} can be found from 

Eq. (1) by backward sweep 
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Solution for Crout’s Method 
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� Mcrout = MGauss 

� But, back substitution M = n2 - n 

� Therefore for a large set one may 
save substantial effort (n3 vs n2 ) 

� Other decompositions are similar 

� It is possible to store the coefficients 
of [L] and [U] in [A] itself as [A] is no 
longer required. This saves memory 

Comments on Crout’s Method 
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Comments on Crout’s  Method-2 

� It is possible to store L and U in A itself and 

conserve  memory and logic written 

accordingly 

� Indices have to be carefully addressed 

� Since memory is cheap, this no longer may 

be required 
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Tridiagonal Matrix Solution 
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Gauss Elimination 
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Logic 
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Thomas Algorithm (TDMA)-I 

12/15 

1112

*

12 a/aa =
111

*

1 a/bb =

For I = 2 to N 

1i,i

*

i,1ii,i

1i,i

*

1ii*

i
aaa

abb
b

−−

−−

−

−
=

1i,i

*

i,1ii,i

1i,i*

1i,i
aaa

a
a

−−

+

+
−

=⇒ Skip for I = N 

16:37 12/22 



4 

Back Substitution 

*

NN bx =

*

1i,i1i

*

ii axbx ++−= For  I = N-1, N-2, …,1 

� It is possible to store A  as (N,3) to conserve  

memory and logic written accordingly 

3,i1i,i aa =+1,i1i,i aa =
− 2,ii,i aa =

Thomas Algorithm (TDMA)-II 
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� These methods are subject to error 
propagation 

� The error propagation can be indicated by a 
term called condition number 

� Ill conditioned systems are difficult to solve 

� Several specialised methods exist 

� Refer your book and advanced Linear 
Algebra Texts. 

� This exposure is sufficient for most general 
problems 

Closing Remarks on Direct Solvers 
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Iterative Methods-I 

� For large systems, which are sparse 
Iterative methods are most widely used 

� These naturally occur during the solution of 
ODE’s and PDE’s. 

� The set of equations have to be diagonal 
dominant to obtain convergence 

� These methods do not suffer from 
propagation of round-off errors 

� This is generally a limitation but where they 
are used, it can be achieved by some 
techniques 
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Iterative methods-II 

� Consider 
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� One can start with a guess and iterate 
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Jacobi Iteration 
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Gauss-Siedel Iteration 
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� Here new values are used as soon as they 
are available 

� Where Jacobi converges, Gauss-Siedel 
converges faster 
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Successive Over Relaxation (SOR) 

� Sufficient Condition for convergence for both 
Jacobi and Gauss-Siedel Iterations is 

∑
=

≥
N

1j

ijii aa for i  = 1, N 

� Where the above criteria is satisfied it is 
possible to accelerate it further by 
introducing over-relaxation factor 

� The value of the over-relaxation factor lies 
between 1-2. Optimum values are available 
for some specific form of the coefficient 
matrix. In general it should be found by trials 
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Logic for SOR 

� For i = 1, N 
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Norms of Vectors 

� p norm of a vector is defined as  
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Termination Criterion 
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