Began the Solution of Linear equations

- The motivation was from several engineering applications
- Understood the definitions of diagonal, tri-diagonal, upper triangular and lower triangular matrices
U Understood the logic for solution of equations when the coefficient matrix is either diagonal, upper triangular or lower triangular

16:37	Review-II
Began with the direct solution of linear	
equations	
a Studied Gauss Elimination	
Understood that Pivoting improves accuracy.	
Studied Gauss Jordan method and	
understood that it can be used to compute	
inverse	

16:37	L-U Decomposition
a If the problem has to be repeated with several	
source vectors for the same coefficient vector,	
L-U decomposition is recommended	
	$[A]=[L][U]$
Such a decomposition speeds up calculation	
\square	In general two methods are available
\square Crout's Decomposition	
\square Dolittle's Decomposition	

Crout's Decomposition

$$
\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right]=\begin{aligned}
& 1 \\
& 4
\end{aligned}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

- $a_{11}=I_{11}, a_{21}=l_{21}, a_{31}=l_{31}$
$\square a_{12}=I_{11} u_{12}, a_{13}=I_{11} u_{13}$
$\square a_{22}=l_{21} u_{12}+l_{22}, a_{32}=l_{31} u_{12}+l_{32}$
- $a_{23}=I_{21} u_{13}+l_{22} u_{23}$
- $a_{33}=I_{31} u_{13}+I_{32} u_{23}+I_{33}$

16:37

Logic for Crout's Method

$$
\begin{aligned}
& l_{i 1}=a_{i 1}, \text { for } i=1, n \\
& u_{1 j}=a_{1 j} / l_{11}, \text { for } j=2, n \\
& \text { for } j=2, n-1 \\
& l_{i j}=a_{i j}-\sum_{k=1}^{i-1} l_{i k} u_{k j} \quad(\text { for } i=j, n) \\
& \left.u_{j i}=\left(a_{j i}-\sum_{k=1}^{i=1} l_{j k} u_{k i}\right) / l_{i j} \quad \text { for } i=j+1, n\right) \\
& l_{n n}=a_{n n}-\sum_{k=1}^{n} l_{n k} u_{k n}
\end{aligned}
$$

16:37 7/22
 Solution for Crout's Method

$[A]\{x\}=\{b\} \Rightarrow[L][U]\{x\}=\{b\}$
\square Introducing
$[U\}\{x\}=\{d\}$ \square
athis implies $[L\}\{d\}=\{b\}$
\square Since $[L]$ and $\{b\}$ are known, $\{d\}$ can be found from Eq.(2)by forward sweep
-Once $\{\mathrm{d}\}$ is found out, $\{\mathrm{x}\}$ can be found from Eq. (1) by backward sweep

8/22

Comments on Crout's Method

- $M_{\text {crout }}=M_{\text {Gauss }}$
- But, back substitution $M=n^{2}-n$
- Therefore for a large set one may save substantial effort (n^{3} vs n^{2})
It is possible to store the coefficients of $[L]$ and $[U]$ in $[A]$ itself as $[A]$ is no longer required. This saves memory
O Other decompositions are similar

${ }^{16: 37}$ Comments on Crout's Method-2

- It is possible to store L and U in A itself and conserve memory and logic written accordingly

$$
\left[\begin{array}{lll}
l_{11} & u_{21} & u_{13} \\
l_{21} & l_{22} & u_{23} \\
l_{31} & l_{32} & u_{33}
\end{array}\right]
$$

- Indices have to be carefully addressed
- Since memory is cheap, this no longer may be required

16:37 Tridiagonal Matrix Solution

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 \\
0 & a_{32} & a_{33} & a_{34} \\
0 & 0 & a_{43} & a_{44}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right\}=\left\{\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right\}
$$

Gauss Elimination

$$
\left[\begin{array}{cccc}
1 & a_{12}^{*} & 0 & 0 \\
0 & 1 & a_{23}^{*} & 0 \\
0 & 0 & 1 & a_{34}^{*} \\
0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right\}=\left\{\begin{array}{l}
b_{1}{ }^{*} \\
b_{2}{ }^{*} \\
b_{3}{ }^{*} \\
b_{4}{ }^{*}
\end{array}\right\}
$$

$$
\Rightarrow
$$

16:37 Thomas Algorithm (TDMA)-II

Back Substitution

$$
\begin{gather*}
x_{N}=b_{N}^{*} \\
x_{i}=b_{i}^{*}-x_{i+1} a_{i, i+1}^{*}
\end{gather*}
$$

It is possible to store A as ($\mathrm{N}, 3$) to conserve memory and logic written accordingly

$$
a_{i, i-1}=a_{i, 1} \quad a_{i, i}=a_{i, 2} \quad a_{i, i+1}=a_{i, 3}
$$

${ }^{16: 37}$ Closing Remarks on Direct Solvers ${ }^{14 / 22}$

- These methods are subject to error propagation
- The error propagation can be indicated by a term called condition numberIII conditioned systems are difficult to solveSeveral specialised methods exist
- Refer your book and advanced Linear Algebra Texts.
- This exposure is sufficient for most general problems

16:37 Iterative Methods-I

. For large systems, which are sparse Iterative methods are most widely used

- These naturally occur during the solution of ODE's and PDE's.
- These methods do not suffer from propagation of round-off errors
] The set of equations have to be diagonal dominant to obtain convergence
- This is generally a limitation but where they are used, it can be achieved by some techniques

$$
\begin{gathered}
\text { Iterative methods-II } \\
\square \text { Consider } \\
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3} \\
\\
\Rightarrow \quad \begin{array}{l}
x_{1}=\left(b_{1}-\left(a_{12} x_{2}+a_{13} x_{3}\right)\right) / a_{11} \\
x_{2}=\left(b_{2}-\left(a_{21} x_{1}+a_{23} x_{3}\right)\right) / a_{22} \\
\\
x_{3}=\left(b_{3}-\left(a_{31} x_{1}+a_{32} x_{2}\right)\right) / a_{33}
\end{array}
\end{gathered}
$$

\square One can start with a guess and iterate

$$
\begin{array}{|cc|}
\hline \text { 16:37 } & \text { Jacobi Iteration } \\
& \\
x_{1}^{N}=\left(b_{1}-\left(a_{12} x_{2}^{N-1}+a_{13} x_{3}^{N-1}\right)\right) / a_{11} \\
x_{2}^{N}=\left(b_{2}-\left(a_{21} x_{1}^{N-1}+a_{23} x_{3}^{N-1}\right)\right) / a_{22} \\
x_{3}^{N}=\left(b_{3}-\left(a_{31} x_{1}^{N-1}+a_{32} x_{2}^{N-1}\right)\right) / a_{33}
\end{array}
$$

17/22

- By adding and subtracting $\mathrm{x}_{\mathrm{i}}^{\mathrm{N}-1}$ on both sides $x_{1}^{N}=x_{1}^{N-1}+\left(b_{1}-\left(a_{11} x_{1}^{N-1}+a_{12} x_{2}^{N-1}+a_{13} x_{3}^{N-1}\right)\right) / a_{11}$ $x_{2}^{N}=x_{2}^{N-1}+\left(b_{2}-\left(a_{21} x_{1}^{N-1}+a_{22} x_{2}^{N-1}+a_{23} x_{3}^{N-1}\right)\right) / a_{22}$ $x_{3}^{N}=x_{3}^{N-1}+\left(b_{3}-\left(a_{31} x_{1}^{N-1}+a_{32} x_{2}^{N-1}+a_{33} x_{3}^{N-1}\right)\right) / a_{33}$

Gauss-Siedel Iteration

- Here new values are used as soon as they are available
$x_{1}^{N}=x_{1}^{N-1}+\left(b_{1}-\left(a_{11} x_{1}^{N-1}+a_{12} x_{2}^{N-1}+a_{13} x_{3}^{N-1}\right)\right) / a_{11}$
$x_{2}^{N}=x_{2}^{N-1}+\left(b_{2}-\left(a_{21} x_{1}^{N}+a_{22} x_{2}^{N-1}+a_{23} x_{3}^{N-1}\right)\right) / a_{22}$
$x_{3}^{N}=x_{3}^{N-1}+\left(b_{3}-\left(a_{31} x_{1}^{N}+a_{32} x_{2}^{N}+a_{33} x_{3}^{N-1}\right)\right) / a_{33}$
- Where Jacobi converges, Gauss-Siedel converges faster

${ }^{16: 37}$ Successive Over Relaxation (SOR)

- Sufficient Condition for convergence for both Jacobi and Gauss-Siedel Iterations is

$$
\left|a_{i i}\right| \geq \sum_{j=1}^{N}\left|a_{i j}\right| \quad \text { for } \mathrm{i}=1, \mathrm{~N}
$$

Where the above criteria is satisfied it is possible to accelerate it further by introducing over-relaxation factor

- The value of the over-relaxation factor lies between 1-2. Optimum values are available for some specific form of the coefficient matrix. In general it should be found by trials

$16: 37$
Termination Criterion

$$
\begin{aligned}
&\left\|x^{N+1}-x^{N}\right\|_{\infty} \leq \varepsilon \\
& \frac{\left\|x^{N+1}-x^{N}\right\|_{\infty}}{\left\|x^{N}\right\|_{\infty}} \leq \varepsilon \\
&\left\|r^{N}\right\|_{\infty} \leq \varepsilon
\end{aligned}
$$

