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Computational Methods in Thermal and
Fluids Engineering

(Solution of Linear Equations-2)
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Review-I

O Began the Solution of Linear equations

U The motivation was from several
engineering applications

U Understood the definitions of diagonal,
tri-diagonal, upper triangular and lower
triangular matrices

0 Understood the logic for solution of
equations when the coefficient matrix is
either diagonal, upper triangular or
lower triangular
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Review-11

U Began with the direct solution of linear
equations
O Studied Gauss Elimination
O Understood that Pivoting improves accuracy.

O Studied Gauss Jordan method and
understood that it can be used to compute
inverse
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L-U Decomposition

QO If the problem has to be repeated with several
source vectors for the same coefficient vector,
L-U decomposition is recommended

[Al=[L]v]

O Such a decomposition speeds up calculation

O In general two methods are available
O Crout’'s Decomposition
Q Dolittle’s Decomposition
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Crout’s Decomposition

O ©®
0 0 Iou, g @ Gy
l, 0 0 1 uy |~ @ Gy Gy yy
Ly, L 0 0 I 951 G5 4
an=li1, @y=lor, agr=13
@12= 1y Urz , @y3=lyy Ugs
@p2=lp1 Ugp + lop , Agp=l31 Ugp + I3z
823= lp1 Usg + lop Usg
83g= 31 U1z + Igp Uz + I33
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Logic for Crout’s Method

ly=a,for i =1,n

]

U1j= a1j//11 5 forj=2,n
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Solution for Crout’s Method

[Afx}=1b}= [L]U Rx}= b}
vl-1a) @

QThis implies  [L}a}={p}
U Since [L] and {b} are known, {d} can be
found from Eq.(2)by forward sweep

U Introducing

O Once {d} is found out, {x} can be found from
Eqg. (1) by backward sweep

for j=2, _n]-1
i

lﬁ%—zlik% (for i =j,n)
k=1
j_

U =(aﬁ _lekuki]/ljj (for i =j+1,n)
k=1
lnn = ann - lnkukn
k=1
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Comments on Crout’s Method

a IVlcrout = MGauss

Q But, back substitution M =n? - n
U Therefore for a large set one may
save substantial effort (n® vs n?)

Q It is possible to store the coefficients
of [L] and [U] in [A] itself as [A] is no
longer required. This saves memory

O Other decompositions are similar
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Comments on Crout’s Method-2

O Itis possible to store L and U in A itself and
conserve memory and logic written
accordingly

Ly uy ug
Ly 1, uy

Ly Ly uy

O Indices have to be carefully addressed

O Since memory is cheap, this no longer may
be required
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Tridiagonal Matrix Solution

a, a, 0 0 ||x, b,

Ay Gy Ay 0 ||x, _ b,

0 a;, as; ayl|x; b,

0 0 a; a,]lx, b,
Gauss Elimination 1 a 0 0 lx bf
= 0 I d 0 |x|_|b
0 0 a ||x| |b
0 0 1])\x) (b,
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Logic

*

_ &
ap=ay/a,; b =b,/a,

Gauss operation for row 2 would imply

’

%k ’ ES
Uy, =0y —apdy, b,=b,—Db,a,,
O To make the diagonal = 1, we need to divide
the row by the RHS of a',
a,; —0

'

* 2 *
dy, —d;d,, Uy, —a;dy,;

k&
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Thomas Algorithm (TDMA)-I

*

_ &
ap=ay/a,; b =b/a,

Forl=2toN
* Qi1 i
— ’ Skip for 1 =N
=4 = R P
iy — 81,41
b. —b.
p =Y —0,_,d;;
. =

ES
a,, —d,_;;4;;_;
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Thomas Algorithm (TDMA)-II

Back Substitution

Xy =by
ES

*k
X, =b, —Xx,,,a;,,, For I=N4, N2, .1
Q It is possible to store A as (N,3) to conserve

memory and logic written accordingly

a,, ;1 =0a;; 4;=0a;, a;,,;, =4a,;
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Closing Remarks on Direct Solvers

O These methods are subject to error
propagation

O The error propagation can be indicated by a
term called condition number

QO Il conditioned systems are difficult to solve
O Several specialised methods exist

O Refer your book and advanced Linear
Algebra Texts.

O This exposure is sufficient for most general
problems
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Iterative Methods-I

O For large systems, which are sparse
Iterative methods are most widely used

U These naturally occur during the solution of
ODE’s and PDE'’s.

O These methods do not suffer from
propagation of round-off errors

O The set of equations have to be diagonal
dominant to obtain convergence

U This is generally a limitation but where they
are used, it can be achieved by some
techniques
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Iterative methods-11

O Consider
a; X, +a;,x,+a;;x; =b,
Ay X, +ayX, +ayx; =b,
a3, X, +a3X, +azx; =b;
X = (bz - (a12x2 ta;;x; ))/au
= X = (bz - (a21x1 +a,;x; ))/azz
X3 = (bj' - (a31x1 ta;,x, ))/a33

O One can start with a guess and iterate
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Jacobi Iteration

N _ (5 N-1 N-1

X = (bz (a12x2 Ta;x, ))/au
N _ (5 N-1 N-1

X, = (bz (a21x1 Ta,x ))/azz
N _ N-1 N-1

X = (b3 - (a31x1 t+azx, ))/a33

O By adding and subtracting xN' on both sides

N _ _N-I _ N-1 N-1 N-1
x'=x+ (b] (aHXI +a,x] T tagx, ))/ a,
N _ _N-I ( _ ( N-I N-I N-I ))
x =0 by —layx T FanxT tayxT))/ a,,
N _ N-I ( _ ( N-1 N-1 N-1 ))
x =x; 0y —\ayx T tapx] T agx; )/ ag
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Successive Over Relaxation (SOR)

O Sufficient Condition for convergence for both
Jacobi and Gauss-Siedel lterations is

N
;| 2> |a,| fori =1,N
=1

=

O Where the above criteria is satisfied it is
possible to accelerate it further by
introducing over-relaxation factor

O The value of the over-relaxation factor lies
between 1-2. Optimum values are available
for some specific form of the coefficient
matrix. In general it should be found by trials

16:37

Gauss-Siedel Iteration

O Here new values are used as soon as they
are available

O Where Jacobi converges, Gauss-Siedel
converges faster

N _ _N-I _ N-1 N-1 N-1

X' =x +(b] (aHXI +apx] T tax, ))/aH
N _ _N-I _ N N-1 N-1

xD=x0 0+ (b2 (a21x1 + X Ay, ))/ a,,
N _ _N-I N N N-I

X =x; + (b3 - (a31x1 tazx, +azx; ))/ as;
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Logic for SOR

a Fori=1,N

N
X, =Xx+@ {bi—(z%xjn/aﬁ

Jj=1

20/22
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Norms of Vectors

U p norm of a vector is defi]ned as

I¥ll, = | 22 fx]
j=1

‘x‘l —> Sum of absolute values of components

‘x‘ .. = Absolute value of the largest component

‘x‘ , = Euclidean Norm
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Termination Criterion

N+1 N
Hx X H <eg
N+1 N
-]
=< €&
N
|
I, <e
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