

16:37 4/22 **L-U Decomposition** If the problem has to be repeated with several source vectors for the same coefficient vector, L-U decomposition is recommended $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} U \end{bmatrix}$ Such a decomposition speeds up calculation In general two methods are available Crout's Decomposition Dolittle's Decomposition

16:37

Comments on Crout's Method

- \square M_{crout} = M_{Gauss}
- \square But, back substitution M = n² n
- Therefore for a large set one may save substantial effort (n³ vs n²)
- It is possible to store the coefficients of [L] and [U] in [A] itself as [A] is no longer required. This saves memory
- □ Other decompositions are similar

8/22

16:37
 Comments on Crout's Method-2

$$9/22$$

 Image: It is possible to store L and U in A itself and conserve memory and logic written accordingly
 $\begin{bmatrix} l_{11} & u_{21} & u_{13} \\ l_{21} & l_{22} & u_{23} \\ l_{31} & l_{32} & u_{33} \end{bmatrix}$

 Image: Indices have to be carefully addressed

□ Since memory is cheap, this no longer may be required

16:37 **Logic**

$$a_{12}^{*} = a_{12} / a_{11}$$
 $b_{1}^{*} = b_{1} / a_{11}$
Gauss operation for row 2 would imply
 $a_{22}^{'} = a_{22} - a_{12}^{*}a_{21}$ $b_{2}^{'} = b_{2} - b_{1}^{*}a_{21}$
 \Box To make the diagonal = 1, we need to divide
the row by the RHS of $a_{22}^{'}$
 $\Rightarrow a_{23}^{*} = \frac{a_{23} - 0}{a_{22} - a_{12}^{*}a_{21}}$ $b_{2}^{*} = \frac{b_{2}^{'}}{a_{22} - a_{12}^{*}a_{21}}$

^{16:37} Thomas Algorithm (TDMA)-I $a_{12}^{*} = a_{12} / a_{11}$ $b_{1}^{*} = b_{1} / a_{11}$ For I = 2 to N $\Rightarrow a_{i,i+1}^{*} = \frac{a_{i,i+1}}{a_{i,i} - a_{i-1,i}^{*}a_{i,i-1}}$ Skip for I = N $b_{i}^{*} = \frac{b_{i} - b_{i-1}^{*}a_{i,i-1}}{a_{i,i} - a_{i-1,i}^{*}a_{i,i-1}}$

Iterative Methods-I
For large systems, which are sparse Iterative methods are most widely used
These naturally occur during the solution of ODE's and PDE's.
These methods do not suffer from propagation of round-off errors
The set of equations have to be diagonal dominant to obtain convergence
This is generally a limitation but where they are used, it can be achieved by some techniques

16:37	16/22
Iterative methods-II	
Consider	
$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$	
$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$	
$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$	
$x_1 = (b_1 - (a_{12}x_2 + a_{13}x_3)) / a_{11}$	
$\implies x_2 = (b_2 - (a_{21}x_1 + a_{23}x_3))/a_{22}$	
$x_3 = (b_3 - (a_{31}x_1 + a_{32}x_2)) / a_{33}$	
One can start with a guess and iterate	

16:37	17/22
Jacobi Iteration	
$x_{1}^{N} = (b_{1} - (a_{12}x_{2}^{N-1} + a_{13}x_{3}^{N-1}))/a_{11}$	
$x_{2}^{N} = (b_{2} - (a_{21}x_{1}^{N-1} + a_{23}x_{3}^{N-1})) / a_{22}$	
$x_{3}^{N} = (b_{3} - (a_{31}x_{1}^{N-1} + a_{32}x_{2}^{N-1}))/a_{33}$	
By adding and subtracting x _i ^{N-1} on both sides	S
$x_{i}^{N} = x_{i}^{N-1} + (b_{1} - (a_{11}x_{i}^{N-1} + a_{12}x_{2}^{N-1} + a_{13}x_{3}^{N-1})) / a_{11}$	
$x_{2}^{N} = x_{2}^{N-1} + \left(b_{2} - \left(a_{21}x_{1}^{N-1} + a_{22}x_{2}^{N-1} + a_{23}x_{3}^{N-1}\right)\right) / a_{22}$	2
$x_{3}^{N} = x_{3}^{N-1} + \left(b_{3} - \left(a_{31}x_{1}^{N-1} + a_{32}x_{2}^{N-1} + a_{33}x_{3}^{N-1}\right)\right) / a_{33}$	}

