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Review 

� Looked at few methods for direct and iterative 
solutions for a set of linear equations. 

� We shall look at methods for the solution of a 
set  of non-linear solutions 
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General 

Consider a set of linear equation: 
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Simple example in two variables is: 
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Iteration Method-I 

� We can rewrite the above equations 
as: 
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� The above equations with an initial 
guess of x=1.5 and y=3.5 diverges 
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Iteration Method-II 

� If we rewrite the equations as: 
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� The above equations converge to the correct 

solution with an initial guess of x=1.5 and 

y=3.5  
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Newton-Raphson Method-I 

• Principle 

⇒

y
y

f

x
x

f
)y,x(f)yy,xx(f

)y.x(

1

)y.x(

1
11

∆

∆∆∆

∂

∂
+

∂

∂
+=++

   For an arbitrary (x,y) 

we seek  y∆x∆ and 
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such that 

Expanding the functions linearly in the 

neighbourhood of (x,y) 
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Newton-Raphson Method-II 
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By similar reasoning we can write 

� The above equations can be solved using a 

linear solver  

� The derivatives can be found by finite 

difference 7/10 

Newton-Raphson Method-III 

• The above concepts can be extended for a set 
of N equations 
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Newton-Raphson Method-IV 

� The method converges with good initial guesses 

� The problem is to give good guesses 

� Continuation method is one powerful method 
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Continuation Method 

� Here a set whose roots are known is considered 

� The simplest way is to generate from the orignal 

function with an arbitrary initial guess 
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� For Theta = 1, (x0,y0) are the roots for F1 and F2 

� The value of Theta is gradually reduced from 1 to 

0 and the set is solved every time with the 

previous roots as the guess. 10/10 


