

Review

\square Looked at few methods for direct and iterative solutions for a set of linear equations.
\square We shall look at methods for the solution of a set of non-linear solutions

General

Consider a set of linear equation:

$$
\begin{aligned}
& f_{l}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0 \\
& f_{2}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0
\end{aligned}
$$

$$
f_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0
$$

Simple example in two variables is:

$$
\begin{aligned}
& x^{2}-x y-10=0 \\
& y+3 x y^{2}-57=0
\end{aligned} \quad \text { Solution } \Rightarrow \begin{aligned}
& x=2 \\
& y=3 \\
& 3 / 10
\end{aligned}
$$

Iteration Method-I

We can rewrite the above equations as:

$$
\begin{aligned}
& x=\frac{10-x^{2}}{y}=F_{1}(x, y) \\
& y=57-3 x^{2}=F_{2}(x, y)
\end{aligned}
$$

The above equations with an initial guess of $x=1.5$ and $y=3.5$ diverges

Iteration Method-II

If we rewrite the equations as:$$
\begin{aligned}
& x=\sqrt{10-x y} \\
& y=\sqrt{\frac{57-y}{3 x}}
\end{aligned}
$$

\square The above equations converge to the correct solution with an initial guess of $x=1.5$ and $y=3.5$

- The condition for convergence is

$$
\left|\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{x}}\right|+\left|\frac{\partial \mathrm{F}_{2}}{\partial \mathrm{x}}\right| \leq 1 \text { and }\left|\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{y}}\right|+\left|\frac{\partial \mathrm{F}_{2}}{\partial \mathrm{y}}\right| \leq 1
$$

Newton-Raphson Method-I

- Principle

Expanding the functions linearly in the neighbourhood of (x, y)
$\Rightarrow f_{l}(x+\Delta x, y+\Delta y)=f_{l}(x, y)+\left.\frac{\partial f_{l}}{\partial x}\right|_{(x, y)} \Delta x$
For an arbitrary (x, y)
we seek Δx and Δy
such that
$f_{I}(x+\Delta x, y+\Delta y)=0$

$$
+\left.\frac{\partial f_{1}}{\partial y}\right|_{(x . y)} \Delta y
$$

Newton-Raphson Method-II

$$
\left.\frac{\partial f_{l}}{\partial x}\right|_{(x . y)} \Delta x+\left.\frac{\partial f_{l}}{\partial y}\right|_{(x . y)} \Delta y=-f_{l}(x, y)
$$

By similar reasoning we can write

$$
\left.\frac{\partial f_{2}}{\partial x}\right|_{(x . y)} \Delta x+\left.\frac{\partial f_{2}}{\partial y}\right|_{(x . y)} \Delta y=-f_{2}(x, y)
$$

- The above equations can be solved using a linear solver
- The derivatives can be found by finite difference

Newton-Raphson Method-IV

The method converges with good initial guessesThe problem is to give good guesses- Continuation method is one powerful method

Continuation Method

- Here a set whose roots are known is considered
- The simplest way is to generate from the orignal function with an arbitrary initial guess
$F_{1}(x, y)=f_{1}(x, y)-\theta f_{1}\left(x_{0}, y_{0}\right)$
$F_{2}(x, y)=f_{2}(x, y)-\theta f_{2}\left(x_{0}, y_{0}\right)$
- For Theta $=1,\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ are the roots for F_{1} and F_{2}
- The value of Theta is gradually reduced from 1 to 0 and the set is solved every time with the previous roots as the guess.

