

General-I

. Many a time we have values of a function at some discrete intervals of a variable and we need to obtain the value of the function at some value of the variable within the range.interpolate or should one estimate by curve fitting using regression?The answer is another question? How accurate is the data?
\square If very accurate - interpolate, if not, fit a curve by regression

General-II

What is common between both?

- Both involve functional approximation

What is the difference?

- In interpolation the curve passes through all points, while in regression, it may not pass through any point!

General-III

X
Interpolation
Regression

Interpolation

- Interpolation fits a curve passing through the existing dataThe number of degrees of fredom would be equal to the number of pointsThe functions chosen are at the discretion of the userPolynomials are the most common functions$\mathrm{N}^{\text {th }}$ order polynomial is unique which passes through $\mathrm{N}+1$ points.Many concepts exist. Lagrangian interpolation is popular and most easy to code.

Lagrange Interpolation-I

First order Lagrange interpolation

$$
f_{l}(x)=\frac{x-x_{2}}{x_{1}-x_{2}} f\left(x_{1}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(x_{2}\right)
$$

Second order Lagrange interpolation

$$
\begin{aligned}
f_{2}(x)= & \frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} f\left(x_{2}\right. \\
& +\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} f\left(x_{3}\right)
\end{aligned}
$$

Lagrange Interpolation-II

General form

$$
\begin{aligned}
& f_{N}(x)=\sum_{i=1}^{N+1} L_{i}(x) f\left(x_{i}\right) \\
& \text { Where, } \quad L_{i}(x)=\prod_{\substack{j=1 \\
j \neq i}}^{N+1} \frac{x-x_{j}}{x_{i}-x_{j}}
\end{aligned}
$$

U Usually it is better to use piecewise lower order polynomials than using a single higher order polynomial

Newton's Forward Difference Polynomial-I

Similarly Newton's forward difference polynomials can be expressed as

- First Order

$$
P_{l}(x)=f(0)+s \Delta f(0)
$$

$$
\text { where } s=\frac{x-x_{0}}{h}
$$

\square Second Order

$$
\begin{aligned}
& \quad P_{2}(x)=f(0)+s \Delta f(0)+\frac{s(s-1)}{2!} \Delta^{2} f(0) \\
& \mathrm{N}^{\text {th }} \text { Order }
\end{aligned}
$$

$$
P_{N}(x)=f\left(x_{0}\right)+\sum_{i=1}^{N}(s C i) \Delta^{i} f\left(x_{0}\right)
$$

Newton's Forward Difference Polynomial-II

The forward difference operator is illustrated in the following table

x	f	Δf	$\Delta^{2} f$	$\Delta^{3} f$
x_{0}	f_{0}	$\left(\mathrm{f}_{1}-\mathrm{f}_{0}\right)=\Delta f_{0}$	$\left(\mathrm{f}_{2}-2 \mathrm{f}_{1}+\mathrm{f}_{0}\right)=\Delta^{2} f_{0}$	$\left(\mathrm{f}_{3}-3 \mathrm{f}_{2}+3 \mathrm{f}_{1}-\mathrm{f}_{0}\right)=\Delta^{3} f_{0}$
x_{1}	f_{1}	$\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)=\Delta f_{1}$	$\left(\mathrm{f}_{3}-2 \mathrm{f}_{2}+\mathrm{f}_{1}\right)=\Delta^{2} f_{1}$	--
x_{2}	f_{2}	$\left(\mathrm{f}_{3}-\mathrm{f}_{2}\right)=\Delta f_{2}$	--	--
x_{3}	f_{3}	--	--	--

Newton's Forward Difference Polynomial-III

The concept that is employed is to expand the function at a point x around x_{0}.

$$
\begin{aligned}
f\left(x_{0}+s h\right)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) s h+f^{\prime \prime}\left(x_{0}\right) \frac{(s h)^{2}}{2!}+\ldots \\
& +f^{n}\left(x_{0}\right) \frac{(s h)^{n}}{n!}+f^{n+1}(\xi) \frac{(s h)^{n+1}}{n+1!}
\end{aligned}
$$

It should also be clear that a polynomial of a $\mathrm{n}^{\text {th }}$ order using $\mathrm{n}+1$ points is unique

Newton's Forward Difference Polynomial-IV

- The Newton's forward interpolating Polynomial formula using certain $n+1$ points is equivalent to the Taylor series formula that satisfies the function at the $\mathrm{n}+1$ points
- To check this out for the first order polynomial is straight forward as

$$
\begin{gathered}
f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h} \\
\Rightarrow f(x)=f\left(x_{0}\right)+\left(\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h}\right) s h \\
P_{1}(x)=f_{0}+s \Delta f_{0}
\end{gathered}
$$

Example-I

$\mathrm{f}=1 / \mathrm{x}$				
x	f	Δf	$\Delta^{2} f$	$\Delta^{3} f$
3.4	0.294118	-0.008404	0.000468	0.000040
3.5	0.285714	-0.007936	0.000428	-
3.6	0.277778	-0.007508	--	--
3.7	0.270270	--	--	--

Find the value of function at 3.44

Example-II

$$
\begin{array}{|r|r|}
\hline s=(3.44-3.40) / 0.1=0.4 & \\
(1 / 3.44)= & 0.294418 \\
+(0.4)(-0.008404) & 0.290756 \\
+[(0.4)(0.4-1) / 2](0.000468) & 0.290700 \\
+[(0.4)(0.4-1)(0.4-2) / 6](0.000040) & 0.290698 \\
\text { Exact Value } & 0.290697674 \\
\hline
\end{array}
$$

Newton's Backward Difference Polynomial-I

Similarly Newton's backward difference polynomials can be expressed as

- First Order

$$
P_{I}(x)=f(0)+s \nabla f(0) \quad \text { where } \quad s=\frac{x-x_{0}}{h}
$$

- Second Order
$P_{2}(x)=f(0)+s \nabla f(0)+\frac{(s)(s+1)}{2!} \nabla^{2} f(0)$
- N^{th} Order
$P_{N}(x)=f\left(x_{0}\right)+\sum_{i=0}^{N}((s+i-1) C i) \nabla^{i} f\left(x_{0}\right)$

Comments

\square For a table having four points we could construct up to four terms
The $n+1^{\text {th }}$ term corresponds to term of s^{n} if expanded in Taylor Series. Further s~1
\square Therefore, from Taylor series expansion we can conclude that the leading error term will be ($\left.h^{n+1} / n!\right)\left(d^{n+1} f / d x^{n+1}\right)$

- Such an approximation is said to be $n+1^{\text {th }}$ order approximation
\square This implies that if h is reduced by a factor of 2 the error will decrease by a factor 2^{n+1}

Find the value of function at 3.44

Example-II

$s=(3.50-3.44) / 0.1=-0.6$	
$(1 / 3.44)=$	0.285714
$+(-0.6)(-0.008404)$	0.290756
$+[(-0.6+1)(-0.6) / 2](0.000508)$	0.290695
$+[(-0.6+2)(-0.6+1)(-0.6) / 6]$	
(0.000050)	0.290698
	Exact Value
	0.290697674

18/19

Physical Interpretations

