

Lagrange Interpolation-I

First order Lagrange interpolation

$$f_{1}(x) = \frac{x - x_{2}}{x_{1} - x_{2}} f(x_{1}) + \frac{x - x_{1}}{x_{2} - x_{1}} f(x_{2})$$

Second order Lagrange interpolation

$$f_{2}(x) = \frac{(x - x_{2})(x - x_{3})}{(x_{1} - x_{2})(x_{1} - x_{3})} f(x_{1}) + \frac{(x - x_{1})(x - x_{3})}{(x_{2} - x_{1})(x_{2} - x_{3})} f(x_{2}) + \frac{(x - x_{1})(x - x_{2})}{(x_{3} - x_{1})(x_{3} - x_{2})} f(x_{3})$$

$$(6/19)$$

Newton's Forward Difference Polynomial-II						
The forward difference operator is illustrated in the following table						
х	f	Δf	$\Delta^2 f$	$\Delta^3 f$		
x _o	f_0	$(f_1-f_0) = \Delta f_0$	$(f_2 - 2f_1 + f_0) = \Delta^2 f_0$	$(f_3-3f_2+3f_1-f_0) = \Delta^3 f_0$		
x ₁	f ₁	$(f_2 - f_1) = \Delta f_1$	$(f_3-2f_2+f_1) = \Delta^2 f_1$			
Х ₂	f ₂	$(f_3-f_2) = \Delta f_2$				
X ₃	f ₃					
9/19						

Г

Newton's Forward Difference Polynomial-III

Newton's Forward Difference Polynomial-IV The Newton's forward interpolating Polynomial formula using certain n+1 points is equivalent to the Taylor series formula that satisfies the function at the n+1 points To check this out for the first order polynomial is straight forward as $f'(x_0) = \frac{f(x_1) - f(x_0)}{h}$ $\Rightarrow f(x) = f(x_0) + \left(\frac{f(x_1) - f(x_0)}{h}\right) sh$ $P_1(x) = f_0 + s\Delta f_0$ 11/19

Example-I						
f=1/x						
х	f	Δf	$\Delta^2 f$	$\Delta^3 f$		
3.4	0.294118	-0.008404	0.000468	0.000040		
3.5	0.285714	-0.007936	0.000428			
3.6	0.277778	-0.007508				
3.7	0.270270					
Find the value of function at 3.44						

Newton's Backward Difference Polynomial-II The backward difference operator is illustrated in the following table							
х	f	∇f	$\nabla^2 f$	$\nabla^3 f$			
x _o	f_0						
х ₁	f ₁	$(f_1-f_0) = \nabla f_1$					
Х ₂	f ₂	$(f_2-f_1) = \nabla f_2$	$(f_2-2f_1+f_0) = \nabla^2 f_2$				
x ₃	f ₃	$(f_3-f_2) = \nabla f_3$	$(f_3\text{-}2f_2\text{+}f_1)\text{=}\nabla^2 f_3$	$(f_3-3f_2+3f_1-f_0) = \nabla^3 f_3$			
	16/19						

Example-I f=1/x						
х	f	∇f	$\nabla^2 f$	$ abla^3 f$		
3.2	0.312500					
3.3	0.303030	-0.009470				
3.4	0.294118	-0.008912	0.000558			
3.5	0.285714	-0.008404	0.000508	0.000050		
	Find the value of function at 3.44					
	17/19					

