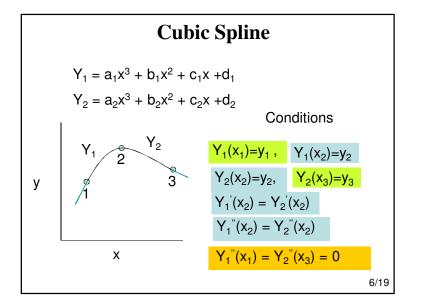
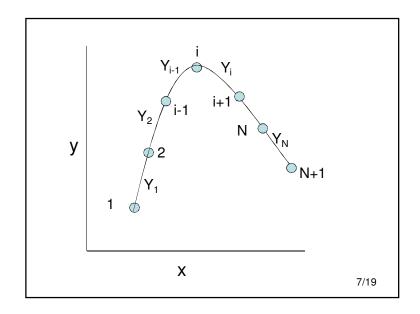


Principle of Splines

- ☐ The concept of spline is to pass a specified order curve through a pair of points
- ☐ We know that we can pass a piece-wise linear curve between two pairs of points
- ☐ Can we pass a third order curve between every pair of points?
- ☐ The question is how?
- Quadratic spline fits a quadratic between every pair of point and cubic spline fits a cubic between every pair

5/19





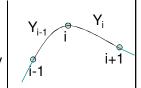
Natural Cubic Spline-I

- ☐ In general if we have N+1 points, we shall have N intermediate curves. This will need 4N conditions
- ☐ For every interior point we shall have four conditions . Thus we shall have 4(N-1) conditions
- ☐ The functional values at the end points give two more conditions
- ☐ Assuming the second derivatives to be zero at the end points closes the relations for a natural spline.

8/19

Natural Cubic Spline-II

- \Box The curve $Y_i(x)$ joins i and i+1
- Since the curve is cubic. the second derivative Y"_i(x) will be a straight line
- ☐ Using Lagrange interpolation, we can write



Χ

$$Y_{i}''(x) = \frac{x - x_{i+1}}{x_{i} - x_{i+1}} Y_{i}''(x_{i}) + \frac{x - x_{i}}{x_{i+1} - x_{i}} Y_{i}''(x_{i+1})$$

9/19

Natural Cubic Spline-III

■ Rewriting first term

$$Y_{i}''(x) = \frac{x_{i+1} - x}{x_{i+1} - x_{i}} Y_{i}''(x_{i}) + \frac{x - x_{i}}{x_{i+1} - x_{i}} Y_{i}''(x_{i+1})$$

$$Y_i''(x) = A_i Y_i''(x_i) + B_i Y_i''(x_{i+1})$$

$$A_i = \frac{x_{i+1} - x}{x_{i+1} - x_i}, B_i = \frac{x - x_i}{x_{i+1} - x_i}$$

Note that.

$$I - A_i = I - \frac{x_{i+1} - x}{x_{i+1} - x_i} = \frac{x_{i+1}^{7} - x_i - x_{i+1}^{7} + x}{x_{i+1} - x_i} = B_i$$

10/19

Natural Cubic Spline-IV

□ Integrating Eq. (1)

$$Y_{i}'(x) = \frac{Y_{i}''(x_{i})}{x_{i+1} - x_{i}} \frac{-(x_{i+1} - x)^{2}}{2} + \frac{Y_{i}''(x_{i+1})}{x_{i+1} - x_{i}} \frac{(x - x_{i})^{2}}{2} + C_{I}$$

$$= \frac{-Y_{i}''(x_{i})A_{i}(x_{i+1} - x)}{2} + \frac{Y_{i}''(x_{i+1})B_{i}(x - x_{i})}{2} + C_{I}$$

☐ Integrating Eq.(2), we get

$$Y_{i}(x) = \frac{Y_{i}''(x_{i})}{x_{i+1} - x_{i}} \frac{(x_{i+1} - x)^{3}}{6} + \frac{Y_{i}''(x_{i+1})}{x_{i+1} - x_{i}} \frac{(x - x_{i})^{3}}{6} + C_{I}x + C_{2}$$

$$= \frac{Y_{i}''(x_{i})A_{i}(x_{i+1} - x)^{2}}{6} + \frac{Y_{i}''(x_{i+1})B_{i}(x - x_{i})^{2}}{6} + C_{I}x + C_{2} \frac{3}{11/19}$$

Natural Cubic Spline-V

- Satisfying the functional values at terminal points
- \Box $Y_i(x_i) = y_i, Y_i(x_{i+1}) = y_{i+1},$
- \square Note that $A_i(x_i) = 1$, $B_i(x_i) = 0$, $A_i(x_{i+1}) = 0$, $B_i(x_{i+1}) = 1$,

$$y_i = \frac{Y_i''(x_i)}{x_{i+1} - x_i} \frac{(x_{i+1} - x_i)^2}{6} + C_I x_i + C_2$$

$$y_{i+1} = \frac{Y_i''(x_{i+1})(x_{i+1} - x_i)^2}{x_{i+1} - x_i} + C_1 x_{i+1} + C_2$$

$$\Box$$
 Eq. (5)-Eq.(4)/(x_{i+1} - x_i)

$$C_{I} = \frac{y_{i+I} - y_{i}}{x_{i+I} - x_{i}} - \frac{(Y_{i}''(x_{i+I}) - Y_{i}''(x_{i})(x_{i+I} - x_{i})}{6}$$
12/19

Natural Cubic Spline-VI

 \Box Similarly, x_{i+1} Eq. (4) - x_i Eq.(5)/ $(x_{i+1}$ - $x_i)$

$$C_{2} = \frac{x_{i+1}y_{i} - x_{i}y_{i+1}}{x_{i+1} - x_{i}} - \frac{\left(x_{i+1}Y_{i}''(x_{i}) + x_{i}Y_{i}''(x_{i+1})\right)\left(x_{i+1} - x_{i}\right)}{6}$$

□ Substitution of C1 and C2 in Eq. (3) and rearranging, we get

$$Y_{i}(x) = A_{i}y_{i} + B_{i}y_{i+1} + \left(Y_{i}''(x_{i})(A_{i}^{3} - A_{i}) + Y_{i}''(x_{i+1})(B_{i}^{3} - B_{i})\right) \frac{(x_{i+1} - x_{i})^{2}}{6}$$

13/19

Natural Cubic Spline-VII

Now we shall match the first derivative at the interior point (x_i). From Slide 10, we have A_i and B_i

$$A_i = \frac{x_{i+1} - x}{x_{i+1} - x_i}, \ B_i = \frac{x - x_i}{x_{i+1} - x_i}$$

$$\frac{dA_i}{dx} = \frac{-1}{x_{i+1} - x_i}, \ \frac{dB_i}{dx} = \frac{1}{x_{i+1} - x_i}$$

☐ Further,

$$Y_i'(x) = \frac{dY_i}{dx} = \frac{dY_i}{dA_i} \frac{dA_i}{dx} = \frac{dY_i}{dB_i} \frac{dB_i}{dx}$$

14/19

6+

Natural Cubic Spline-VIII

Differentiating Eq. (6) with x, we have

$$Y_{i}'(x) = \frac{dA_{i}}{dx}y_{i} + \frac{dB_{i}}{dx}y_{i+1} + \begin{pmatrix} Y_{i}''(x_{i})(3A_{i}^{2} - 1)\frac{dA_{i}}{dx} \\ +Y_{i}''(x_{i+1})(3B_{i}^{2} - 1)\frac{dB_{i}}{dx} \end{pmatrix} \frac{(x_{i+1} - x_{i})^{2}}{6}$$

$$= -\frac{y_{i}}{x_{i+1} - x_{i}} + \frac{y_{i+1}}{x_{i+1} - x_{i}} + \begin{pmatrix} -Y_{i}''(x_{i}) \frac{(3A_{i}^{2} - 1)}{x_{i+1} - x_{i}} \\ +Y_{i}''(x_{i+1}) \frac{(3B_{i}^{2} - 1)}{x_{i+1} - x_{i}} \end{pmatrix} \frac{(x_{i+1} - x_{i})^{2}}{6}$$

15/19

Natural Cubic Spline-IX

 \square Note that $Y_i'(x_i) = Y_{i-1}'(x_i)$

$$Turther, A_{i}(x_{i}) = 1, B_{i}(x_{i}) = 0,$$

$$Y'_{i}(x_{i}) = -\frac{y_{i}}{x_{i+1} - x_{i}} + \frac{y_{i+1}}{x_{i+1} - x_{i}} + \begin{pmatrix} -2Y''_{i}(x_{i}) \\ x_{i+1} \nearrow x_{i} \\ -\frac{Y''_{i}(x_{i+1})}{x_{i+1} \nearrow x_{i}} \end{pmatrix} \frac{(x_{i+1} - x_{i})^{2}}{6}$$

 \Box Changing i to i-1, $A_{i-1}(x_i) = 0$, $B_{i-1}(x_i) = 1$,

$$Y'_{i-1}(x_i) = -\frac{y_{i-1}}{x_i - x_{i-1}} + \frac{y_i}{x_i - x_{i-1}} + \begin{pmatrix} \underline{Y''_{i-1}(x_{i-1})} \\ x_i \not - x_{i-1} \\ -\underline{2Y''_{i-1}(x_i)} \\ x_i \not - x_{i-1} \end{pmatrix} \frac{(x_i - x_{i-1})^2}{6}$$
16/19

Natural Cubic Spline-X

☐ Eqs. (7) and (8) are rewritten as

$$Y_{i}'(x_{i}) = \frac{-y_{i} + y_{i+1}}{x_{i+1} - x_{i}} + \left(-2Y_{i}''(x_{i}) - Y_{i}''(x_{i+1})\right) \frac{(x_{i+1} - x_{i})}{6}$$

$$Y'_{i-1}(x_i) = \frac{-y_{i-1} + y_i}{x_i - x_{i-1}} + \left(Y''_{i-1}(x_{i-1}) - 2Y''_{i-1}(x_i)\right) \frac{(x_i - x_{i-1})}{6}$$

☐ Eqs. (9) and (10) and rearranging (note that Y" is unique at the nodal points

$$|Y''(x_{i-1})\frac{(x_i - x_{i-1})}{6} + 2Y''(x_i)\frac{(x_{i+1} - x_{i-1})}{6} + Y''(x_{i+1})\frac{(x_{i+1} - x_i)}{6}$$

$$= \frac{(y_{i+1} - y_i)}{(x_{i+1} - x_i)} - \frac{(y_i - y_{i-1})}{(x_{i+1} - x_{i-1})}$$

$$= \frac{11}{6}$$

17/19

Natural Cubic Spline-XI

- \Box The above relation is valid for I = 2, 3, ..., N
- \Box For natural spline, Y" (1), Y" (N+1) = 0
- □ Eq. (10) is a list set of N-1 eqs., for Y" (2), Y" (3), ..., Y" (N).
- Once these are computed, the value of y is found using Eq. (6). The A_i and B_i are found using Eq. (6+)

18/19

Algorithm

- ☐ Input x(i), y(i) for i = 1, 2, 3, ..., N, N+1
- ☐ Formulate TDMA Coefficients and RHS. (Refer Eq. (11)
- \Box For natural spline, Y" (1), Y" (N+1) = 0
- ☐ Solve for Y" (2) to Y" (N) Using TDMA
- ☐ Search for the interval where the interpolation is required
- Once these are computed, the value of y is found using Eq. (6). The A_i and B_i are found using Eq. (6+)

19/19