ME 704

Computational Methods in Thermal and|
Fluids Engineering

(Linear Regression)

Review

O Introduce the concept of spline interpolation,
wherein a higher order curve is fitted
between two points

O Cubic Spline passes third order equation
through each pair of points

O This was accomplished by not only matching
the functional values, but also the continuity
of first and second derivatives

O The algebra and the algorithm was fully laid
out
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General

U When imprecise data is handled,
regression is recommended

U Linear regression is most common

0 Among the functions used polynomial
is most preferred

U Piecewise lower order is always better
that a single higher order polynomial

QO In regression lower order polynomial is
passed through a large number of

points 315

Criterion for Regression

O Maximum error minimised?

O Sum of error minimised?

O Square of the sum of error minimised?

U ei=Yi- Y

U Least squares
criterion implies

2 . .
Zei =minimum
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Linear Regression-I

Q If the function to be fitted is
f(x)=a,f(x)+a,f,(x)
U Then sum of squares of error implies

ZEiZ :Z( yi—(a, fi(x;)+a,fr(x )))2

4 a, and a, are determined by using

2 2
0 E° _0QE, o

ada, da,
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Linear Regression-1I

> ES al
Za‘;zjl - 2Z(yi_(a1f1(xi)+a2f2(xi)))f1(xi):0

i=I

:Z(yif](x[ )_a]Z(f](-x[ )) _azz.fz(x[ )f](x[)zo

- 0N E’
Similarly %’ will lead to

a,

:Z(y[fZ(‘xi)_a]Zf](x[ )fz(-x[ )_azz(fz(x[ ))2 =0
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Linear Regression-II1

2D 2% )h(%) {a} 2 (x5 )fi(x;)

a,

Zf,(xi )50 %:) Z(fz(xi ) Zy( % )I0%)

Q If f;(x) = 1 and f5(x) = x, then we have a
linear fit

U Note that the coefficient matrix is symmetric

U a; and a, can be obtained by Gauss
elimination
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U The above procedure can be generalised
for any number of functions. This is called
generalised least squares

U Let us denote the F matrix as
_f](x]) fz(xl)—
fi(xy)  fo(x,) nx2

L fi(x,) X))

FT_|:f1(x1) f](xz) f,(xn)}an
fZ(x]) fz(xz) fZ(xn)
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Generalized least Squares-I1

DUOf(x) D f(x)fx)
FTF — =1 i=1

2L )E(x) D (%))

Generalized least Squares-111

U The linear least square can therefore be
generalised as
y(x;)

y(x,)
a; T
FTF{ }: F .

y(x,)
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y(x,) N
y(x,) D y(x)fi(x;)
|
) 2 (%) %)
y(x,) - 915
Goodness of Fit

U The quality of fit is normally given by
coefficient of regression, which is an
obscure quantity

U In engineering parlance, the more relevant
parameter that can be easily connected is
the RMS error

Q Often the error is normalised with the true
value to express the RMS error as a fraction
or as percentage 115

Power Law Fit-I

O Functions of the form f = ¢ Re" can be
fitted with linear regression

U Taking log of both sides, we get
In(f) = In(c) + n In(Re)

Q4 This is of the form y = a + bx, where,
y =In(f), x = In(Re)
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Power Law Fit-11

U Multiple functions of the form Nu = ¢ Re" Prm
can be fitted with linear regression

In (Nu) = In(c) + nIn(Re) + m In(Pr)
=z=a,f,(x,y)+a,f(xy)+a,f,(x,y)
Q4 In the above equation

z =In (Nu), fo(x,y) = 1, f1(x,y) = In(Re)
fo(x,y) = In(Pr)
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Other Functions-II
O Saturation Function ] b+ x
y a «x
1 bl 1
— = 4=
y ax a
y y= z 1/
b+ x y Slope = b/a
Intercept= 1/a
X
1/x
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Other Functions-I

Q Other than power laws, exponential and
saturation functions are also popular, which
can be transformed into linear regression

In(y)=In(a) +bx
bx
y=ae
I
y n(y) Slope =b
Intercept= In(a)
X

X
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