ME 704
Computational Methods in Thermal and
Fluids Engineering
(Linear Regression)
Kannan Iyer
Kiyer@iitb.ac.in
Department of Mechanical Engineering
Indian Institute of Technology, Bombay

General

When imprecise data is handled, regression is recommendedLinear regression is most commonAmong the functions used polynomial is most preferredPiecewise lower order is always better that a single higher order polynomialIn regression lower order polynomial is passed through a large number of points

Review

- Introduce the concept of spline interpolation, wherein a higher order curve is fitted between two points
\square Cubic Spline passes third order equation through each pair of points
- This was accomplished by not only matching the functional values, but also the continuity of first and second derivativesThe algebra and the algorithm was fully laid out

Criterion for Regression

\square Maximum error minimised?
\square Sum of error minimised?
\square Square of the sum of error minimised?

$e_{i}=y_{i}-y_{f t}$

- Least squares criterion implies
$\sum e_{i}^{2}=$ minimum

Linear Regression-I

If the function to be fitted is

$$
f(x)=a_{1} f_{1}(x)+a_{2} f_{2}(x)
$$

\square Then sum of squares of error implies
$\sum E_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-\left(a_{1} f_{1}\left(x_{i}\right)+a_{2} f_{2}\left(x_{i}\right)\right)\right)^{2}$
$\square \mathrm{a}_{1}$ and a_{2} are determined by using

$$
\frac{\partial \sum E_{i}^{2}}{\partial a_{l}}=\frac{\partial \sum E_{i}^{2}}{\partial a_{2}}=0
$$

Linear Regression-III

$\left[\begin{array}{cc}\sum_{i=1}^{N}\left(f_{l}\left(x_{i}\right)\right)^{2} & \sum_{i=1}^{N} f_{1}\left(x_{i}\right) f_{2}\left(x_{i}\right) \\ \sum_{i=1}^{N} f_{1}\left(x_{i}\right) f_{2}\left(x_{i}\right) & \sum_{i=1}^{N}\left(f_{2}\left(x_{i}\right)\right)^{2}\end{array}\right]\left\{\begin{array}{l}a_{1} \\ a_{2}\end{array}\right\}=\left\{\begin{array}{l}\sum_{i=1}^{N} y\left(x_{i}\right) f_{1}\left(x_{i}\right) \\ \sum_{i=1}^{N} y\left(x_{i}\right) f_{2}\left(x_{i}\right)\end{array}\right\}$
If $f_{1}(x)=1$ and $f_{2}(x)=x$, then we have a linear fit
Note that the coefficient matrix is symmetric
$\square a_{1}$ and a_{2} can be obtained by Gauss elimination

The above procedure can be generalised for any number of functions. This is called generalised least squares
\square Let us denote the F matrix as

$$
F=\left[\begin{array}{cc}
f_{l}\left(x_{l}\right) & f_{2}\left(x_{l}\right) \\
f_{l}\left(x_{2}\right) & f_{2}\left(x_{2}\right) \\
\ldots \ldots & \ldots . . \\
\ldots \ldots & \ldots . \\
f_{l}\left(x_{n}\right) & f_{2}\left(x_{n}\right)
\end{array}\right] \quad \mathrm{n} \times 2
$$

$\Rightarrow F^{T}=\left[\begin{array}{lllll}f_{l}\left(x_{1}\right) & f_{l}\left(x_{2}\right) & \ldots . & \ldots . & f_{l}\left(x_{n}\right) \\ f_{2}\left(x_{1}\right) & f_{2}\left(x_{2}\right) & \ldots . & \ldots . & f_{2}\left(x_{n}\right)\end{array}\right] \begin{aligned} & 8 \times n \\ & { }_{8 / 15}\end{aligned}$

$$
\begin{gathered}
\text { Generalized least Squares-II } \\
F^{T} F=\left[\begin{array}{cc}
\sum_{i=1}^{N}\left(f_{l}\left(x_{i}\right)\right)^{2} & \sum_{i=1}^{N} f_{l}\left(x_{i}\right) f_{2}\left(x_{i}\right) \\
\sum_{i=1}^{N} f_{l}\left(x_{i}\right) f_{2}\left(x_{i}\right) & \sum_{i=1}^{N}\left(f_{2}\left(x_{i}\right)\right)^{2}
\end{array}\right] \\
F^{T}\left\{\begin{array}{c}
y\left(x_{1}\right) \\
y\left(x_{2}\right) \\
\cdot \\
\cdot \\
y\left(x_{n}\right)
\end{array}\right\}=\left\{\begin{array}{l}
\sum_{i=1}^{N} y\left(x_{i}\right) f_{l}\left(x_{i}\right) \\
\sum_{i=1}^{N} y\left(x_{i}\right) f_{2}\left(x_{i}\right)
\end{array}\right\}
\end{gathered}
$$

Generalized least Squares-III

The linear least square can therefore be generalised as

$$
F^{T} F\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}=F^{T}\left\{\begin{array}{c}
y\left(x_{1}\right) \\
y\left(x_{2}\right) \\
. . \\
. . \\
y\left(x_{n}\right)
\end{array}\right\}
$$

Goodness of Fit

- The quality of fit is normally given by coefficient of regression, which is an obscure quantity
- In engineering parlance, the more relevant parameter that can be easily connected is the RMS error

$$
\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}
$$

Often the error is normalised with the true value to express the RMS error as a fraction or as percentage

Power Law Fit-II

\square Multiple functions of the form $\mathrm{Nu}=\mathrm{c} \mathrm{Re}^{\mathrm{n}} \mathrm{Pr}^{m}$ can be fitted with linear regression

$$
\begin{gathered}
\ln (\mathrm{Nu})=\ln (\mathrm{c})+\mathrm{n} \ln (\mathrm{Re})+\mathrm{m} \ln (\mathrm{Pr}) \\
\Rightarrow z=a_{0} f_{0}(x, y)+a_{1} f_{l}(x, y)+a_{2} f_{2}(x, y)
\end{gathered}
$$

\square In the above equation
$z=\ln (N u), f_{0}(x, y)=1, f_{1}(x, y)=\ln (R e)$
$f_{2}(x, y)=\ln (\operatorname{Pr})$

Other Functions-I

- Other than power laws, exponential and saturation functions are also popular, which can be transformed into linear regression

Other Functions-II

- Saturation Function

$$
\mathbf{y} \frac{y=a \frac{x}{b+x}}{\mathbf{x}}
$$

$$
\begin{array}{r}
\frac{1}{y}=\frac{1}{a} \frac{b+x}{x} \\
\frac{1}{y}=\frac{b}{a} \frac{1}{x}+\frac{1}{a} \\
\text { Intercept }=1 / \mathrm{a} \\
\mathbf{1 / x}
\end{array}
$$

