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Review

� Introduce the concept of spline interpolation, 
wherein a higher order curve is fitted 
between two points

� Cubic Spline passes third order equation 
through each pair of points

� This was accomplished by not only matching 
the functional values, but also the continuity 
of first and second derivatives 

� The algebra and the algorithm was fully laid 
out
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General

� When imprecise data is handled, 
regression is recommended

� Linear regression is most common

� Among the functions used polynomial 
is most preferred

� Piecewise lower order is always better 
that a single higher order polynomial

� In regression lower order polynomial is 
passed through a large number of 
points
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Criterion for Regression

� Maximum error minimised? 

� Sum of error minimised? 

� Square of the sum of error minimised? 

� ei = yi - yfit

imummine
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� Least squares 
criterion implies
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� If the function to be fitted is
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� Then sum of squares of error implies
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� a1 and a2 are determined by using
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Linear Regression-I
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Linear Regression-II
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� If f1(x) = 1 and f2(x) = x, then we have a 
linear fit

� Note that the coefficient matrix is symmetric

� a1 and a2 can be obtained by Gauss 
elimination

Linear Regression-III
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� The above procedure can be generalised
for any number of functions. This is called 
generalised least squares

� Let us denote the F matrix as 
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Generalized least Squares-II
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� The linear least square can therefore be 
generalised as
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Generalized least Squares-III
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� In engineering parlance, the more relevant 
parameter that can be easily connected is 
the RMS error
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� Often the error is normalised with the true 
value to express the RMS error as a fraction 
or as percentage 

� The quality of fit is normally given by 
coefficient of regression, which is an 
obscure quantity

Goodness of Fit
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� Functions of the form f = c Ren can be 
fitted with linear regression

� Taking log of both sides, we get

ln(f) = ln(c) + n ln(Re)

� This is of the form y = a + bx, where,

y = ln(f), x = ln(Re)

Power Law Fit-I
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� Multiple functions of the form Nu = c Ren Prm

can be fitted with linear regression

ln (Nu) = ln(c) + n ln(Re) + m ln(Pr)
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� In the above equation

z = ln (Nu), f0(x,y) = 1, f1(x,y) = ln(Re) 

f2(x,y) = ln(Pr)

Power Law Fit-II

13/15

� Other than power laws, exponential and 
saturation functions are also popular, which 
can be transformed into linear regression
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Slope = b

Intercept= ln(a)

Other Functions-I
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� Saturation Function
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Slope = b/a

Intercept= 1/a

Other Functions-II

15/15


