1. Consider open-channel flow of water in a circular pipe of diameter D. The water level is at a height h from the lowest point in the cross-section of the pipe. Compute the value of the ratio h / D using the bisection method, when (a) 20% (b) 40% (c) 60%, and (d) 80% of the cross-sectional area is occupied by air.
2. Consider the generalised equation of state given by Redlich-Kwong:

$$
p=\frac{R T}{(v-b)}-\frac{a}{\sqrt{T} v(v+b)}
$$

where $\mathrm{a}=0.4275\left(\mathrm{R}^{2} \mathrm{~T}_{\mathrm{c}}{ }^{2.5}\right) / \mathrm{p}_{\mathrm{c}}$ and $\mathrm{b}=0.08664 \mathrm{RT}_{\mathrm{c}} / \mathrm{p}_{\mathrm{c}}, \mathrm{T}_{\mathrm{c}}$ and P_{c} being the critical temperature and pressure respectively, R is gas constant. Using this equation of state for water at a pressure of 1 bar, compute the value of the specific volume of water vapour using the Secant and the Newton's methods, at temperatures varying from $100{ }^{\circ} \mathrm{C}$ to $300{ }^{\circ} \mathrm{C}$ insteps of $50^{\circ} \mathrm{C}$. Compare your result with the values given in the steam table. Plot the error as a function iteration number for both the methods and comment.
3. Use Newton's method to find the roots of (a) $f(x)=x^{2}-2 x+1$ and (b) $f(x)=x^{2}-3 x+2$. Both the functions have a root $x=1$. For both cases, start with an initial guess $x(0)=1.1$. Use double precision variables in your program. Terminate your iterations when the absolute value of $f(x)$ is less than 10^{-12}. Tabulate the values of $x(k)$, $e(k)=x(k)-1$ and $f(x(k))$ for each iteration. Print out the number of iterations required for convergence for each case. What is the ratio $e(k+1) / \mathrm{e}(\mathrm{k})$ for the two cases? Comment on the rates of convergence for the two cases.
4. Consider the quadratic equation, $\mathrm{x}^{2}-2.2 \mathrm{x}+1.2$. Note that the roots of the equation are 1 and 1.2. You are asked to find the roots of the above equation using fixed point iteration with, $x=x+\omega g(x)$, where ω is a relaxation parameter. Perform the following steps and comment on the results with valid justifications
(a) starting with the initial guess $\mathrm{x}=1.10, \omega=1.00$, perform 50 iterations
(b) starting with the initial guess $x=1.21, \omega=1.00$, perform 50 iterations
(c) starting with the initial guess $x=1.21, \omega=-1.0$, perform 50 iterations
(d) starting with the initial guess $x=1.21, \omega=-5.0$, perform 50 iterations
(e) starting with the initial guess $x=1.21, \omega=-8.0$, perform 50 iterations

