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Directed Energy Deposition

• Directed Energy Deposition (DED): AM process using focused thermal energy.
• Energy Sources: Laser (L-DED), Electron Beam (EB-DED), Plasma/Electric Arc (WAAM).
• Feedstock: Powder or wire.
• Applications: Repair, remanufacture, feature addition, large parts.
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Powder DED



Variants of Laser Wire DED (WLDED)

https://www.waam3d.com/

Lateral wire feeding Coaxial wire feeding

Non-uniform heat input & difficult free form deposition

Coaxial wire laser DED offers uniform and higher-quality deposits during free form deposition 
Uniform heat input & easy free form deposition

Abadi et. al. (2023)

https://rb.gy/gqd6r3

Aditya et. al. (2025) Odermatt et. al. (2022) https://shorturl.bz/t
vz



Wire DED

Motta et. al. (2018) 
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Comparison with AM Processes

• Deposition Rate: DED Medium–High, PBF Low, Binder Jetting High.
• Accuracy: DED Moderate, PBF High, Binder Jetting Moderate.
• Surface Finish: DED Rough, PBF Smooth, Binder Jetting Rough.
• Build Size: DED Large, PBF Small–Medium, Binder Jetting Large.
• Applications: DED repair/FGMs, PBF precision parts, Binder Jetting 

prototyping.



Comparison with AM Techniques

• Deposition Rate: L-DED medium, PBF low, WAAM high.
• Accuracy: L-DED moderate, PBF high, WAAM low.
• Surface Finish: L-DED rough, PBF smooth, WAAM rough.
• Materials: L-DED broad range, PBF powders, WAAM wires.
• Applications: L-DED repair/large, PBF precision, WAAM large.



INTRODUCTION

• Fuse with laser beam another material - of 
desired properties - on substrate material

• Metallurgical Bonding at surface 
• Minimal dilution between material layers

Intro Mech! PwrAtt" Appl"



Substrate

Melt Pool

PROCESS MECHANISM

• Melt pool formation and fusion by moving Laser beam 
• Surface tension gradient drives molten material flow
• Substrate & Clad material gets mixed in molten state at 

the interface forming metallurgical bond
• Physical Phenomena's  occurring

– Heat transfer, momentum, and continuity

Intro Mech! PwrAtt" Appl"



PROCESS MECHANISM

• High cooling rate ( quenching )
– Formation of fine-grained microstructures OR meta-stable 

phases
• Supply of clad material to the substrate
– Pre-Placed: prior clad deposition ( aka laser sintering)

• Melt-pool formed on top of clad layer and then proceeds  
downwards to the substrate

– In-situ feeding: powder injection gun (coaxial OR lateral)
• Melt-pool formation first occurs at substrate in which clad 

powder is being fed
• On their way through the laser beam particles are preheated 

(Power Attenuation)

Intro Mech! PwrAtt" Appl"



Integrated Modeling of Laser DED Process
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Integrated Modeling of Laser DED Process

•     Power distribution
•     Laser-powder interaction
•     Attenuation
•     Energy reaching the substrate

LASER-POWDER INTERACTION

Output: attenuated power

• Thermal simulation 
• Melt pool volume estimation 
• Area of the melt pool surface 

MELT POOL-SUBSTRATE

Output: melt pool area, width

• Melt pool area
• Powder stream area
• Powder catchment efficiency 

CATCHMENT EFFICIENCY

Output: height, contact angle

• Thermomechanical model 
• Inclusion of martensite fraction 
• Estimation of residual stress and dilution

METALLO-THERMOMECHANICAL MODEL

Output: residual stress

Output: dilution
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POWER ATTENUATION

Top View

Intro Mech! Pw𝑟Att" Appl"

Geometric characteristics process zone(Toyserkani et al., 2005)



POWER ATTENUATION

• Energy absorbed by particle along its path
– Spherical, Size>>Penetration depth

     D

𝐸!"#$%"&' = 𝐸()*('&)+ − 𝐸%&,-&*+&' − 𝐸+%!)#.(++&'

𝐸!"#$%"&' = 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑣𝑖𝑡𝑦×𝐸()*('&)+
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Intro Mech! PwrAtt" Appl"

Clad particle Projected Area



Power Attenuation

• Laser power absorption can be attributed to 
following phenomena (figure 1):

• Laser beam power reaching directly to the 
substrate (P1)

• Pre-heating of powder particles entering the 
beam (P2)

• Fraction of laser beam reaching directly to the 
substrate gets reflected and comes in contact 
with the powder particles, and fraction of that 
will get absorbed (P3) 







Power Attenuation



Powder flux modeling  of Laser DED Process
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Powder Flow Visualization 

Effect of gravity is prominent at
low speeds 

Effect of gravity is countered by increased 
drag at high speeds



Melt Pool & Catchment
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Geometry & Contact Angle of Deposition
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Residual Stress Evolution
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Direction of residual stress measurement

Contour of residual stress along normal direction



Process Maps for favorable depositions in single track
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Moving heat source (DFLUX)
Element activation technique Temperature distribution

Calculate peak temperatures
Cooling rate/Heating rate
Melt zone, (USDFLD)
Calculation of Dilution

Calculate martensite fraction 
$%& = −)exp	 −)(/0 − 1 )

Calculate strains: 
Thermal: $34567 1 = 	89	$1 +
1 − 1;<= $89	

Volume dilation: $3459> =
?
@
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(UEXPAN)

Calculate stress and deviatoric 
stress
Johnson cook flow stress model

(UMAT)

Residual stress Experimental validation
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Vundru et al., International Journal of Mech. Sci



Computational Modeling of  Multi-Track Multi-Layer L-DED 27

Analytical-FEM Multi-Track Multi-Layer Deposition
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APPLICATIONS

• Surface properties enhancement
• Component repair
• Rapid prototyping
• Functionally graded components

Intro Mech! PwrAtt" Appl"

Rapid prototyping
http://lastanzadellemeraviglie.nova100.ilsole24ore.com

Turbine wheels repair(Rombouts et al, 2006)

Parts repair (Toyserkani et al., 2005)


