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Directed Energy Deposition
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Directed Energy Deposition (DED): AM process using focused thermal energy.

Energy Sources: Laser (L-DED), Electron Beam (EB-DED), Plasma/Electric Arc (WAAM).
Feedstock: Powder or wire.

Applications: Repair, remanufacture, feature addition, large parts.
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Powder DED




Variants of Laser Wire DED (WLDED)
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Non-uniform heat input & difficult free form deposition Uniform heat input & easy free form deposition

Coaxial wire laser DED offers uniform and higher-quality deposits during free form deposition
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Comparison with AM Processes

Deposition Rate: DED Medium—High, PBF Low, Binder Jetting High.
Accuracy: DED Moderate, PBF High, Binder Jetting Moderate.
Surface Finish: DED Rough, PBF Smooth, Binder Jetting Rough.
Build Size: DED Large, PBF Small-Medium, Binder Jetting Large.

Applications: DED repair/FGMs, PBF precision parts, Binder Jetting
prototyping.



Comparison with AM Techniques

Deposition Rate: L-DED medium, PBF low, WAAM high.
Accuracy: L-DED moderate, PBF high, WAAM low.

Surface Finish: L-DED rough, PBF smooth, WAAM rough.
Materials: L-DED broad range, PBF powders, WAAM wires.
Applications: L-DED repair/large, PBF precision, WAAM large.
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INTRODUCTION

* Fuse with laser beam another material - of
desired properties - on substrate material

 Metallurgical Bonding at surface
 Minimal dilution between material layers

Clad Layers _.

Substrate




PROCESS MECHANISM

Melt pool formation and fusion by moving Laser beam
Surface tension gradient drives molten material flow

Substrate & Clad material gets mixed in molten state at
the interface forming metallurgical bond

Physical Phenomena's occurring
— Heat transfer, momentum, and continuity

Substrate
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PROCESS MECHANISM

* High cooling rate ( quenching )

— Formation of fine-grained microstructures OR meta-stable
phases

* Supply of clad material to the substrate

— Pre-Placed: prior clad deposition ( aka laser sintering)

* Melt-pool formed on top of clad layer and then proceeds
downwards to the substrate

— In-situ feeding: powder injection gun (coaxial OR lateral)

* Melt-pool formation first occurs at substrate in which clad
powder is being fed

* On their way through the laser beam particles are preheated
(Power Attenuation)



Integrated Modeling of Laser DED Process

Coaxial powder

feeding nozzle
Powder distribution:
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Integrated Modeling of Laser DED Process

@ LASER-POWDER INTERACTION

¢ Rowerdistribution — - - oo
* Laser-powder interaction

* Attenuation

* Energy reaching the substrate
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@ CATCHMENT EFFICIENCY

* Melt pool area
* Powder stream area
* Powder catchment efficiency
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@ MELT POOL-SUBSTRATE

* Thermal simulation

* Melt pool volume estimation

* Area of the melt pool surface n
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@ METALLO-THERMOMECHANICAL MODEL i3

¢ Thermomechanical model
* Inclusion of martensite fraction I
e Estimation of residual stress and dilution

|
|
T —— 1
. Output: residual stress :
|
|
|

Output: dilution




; Intro >;Mechm W'>Appln )

POWER ATTENUATION
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Geometric characteristics process zone(Toyserkani et al., 2005)
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POWER ATTENUATION

* Energy absorbed by particle along its path
— Spherical, Size>>Penetration depth

Eabsorbed = Eincident - Ereflected — ?Zransmitted
Eabsorbea = AbsorptivityXEincident

Eabsorbea = Absorptivity XAy, XI1(x,y,z) XAt
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Power Attenuation

Laser power absorption can be attributed to
following phenomena (figure 1):

Laser beam power reaching directly to the
substrate (P1)

Pre-heating of powder particles entering the
peam (P2)

-raction of laser beam reaching directly to the
substrate gets reflected and comes in contact
with the powder particles, and fraction of that
will get absorbed (P3)
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Powder flux modeling of Laser DED Process
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Powder Flow Visualization
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Thermal model -Melt
pool substrate
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Residual Stress Evolution

Interface
Clad Kowari diffractometer Bruker D8 Discover X-ray diffractor
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Process Maps for favorable depositions in single track
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0

s

W:Width of the deposition
h: Height of the deposition
0: Contact angle

active inactive
elements elements

Oint™~0
Tensile 3
Oint > 0

Powder distribution &= Attenuation

Powder catchment Thermal model
efﬁgiencv (Melt-pool)
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Deposition geometry

Moving heat source (DFLUX)
Element activation technique

Temperature distribution

r

Calculate martensite fraction Calculate peak temperatures

— Cooling rate/Heating rate
dF, = —fexp(—f(M; —T
= P =T —a b one, (USDFLD)

Calculation of Dilution

T———

Calculate strains:

Thermal: dsfj"(T) = ardT +
(T - Tref)daT

Volume dilation: dsiTjF =

1(Av
3 (7) (@Fn)dyj Calculate stress and deviatoric
TRIP: def}” = 3Kpp(1 — stress
Fm)(dFm)Sij Johnson cook flow stress model
(UEXPAN) (UMAT)
T—— '_T*

Experimental validation - Residual stress

Vundru et al., International Journal of Mech. Sci
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Analytical-FEM Multi-Track Multi-Layer Deposition
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Computational Modeling of Multi-Track Multi-Layer L-DED 27
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APPLICATIONS

Surface properties enhancement
Component repair
Rapid prototyping
Functionally graded components

Parts repair (Toyserkani et al., 2005)
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Rapid prototyping Turbine wheels repair(Rombouts et al, 2006)
http://lastanzadellemeraviglie.noval00.ilsole24ore.com




