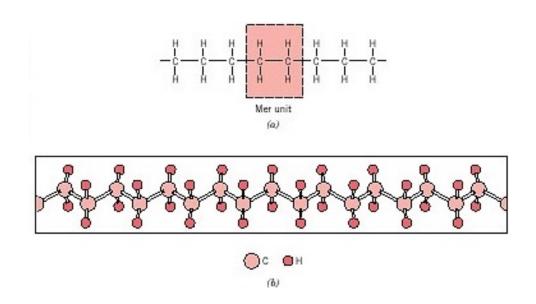
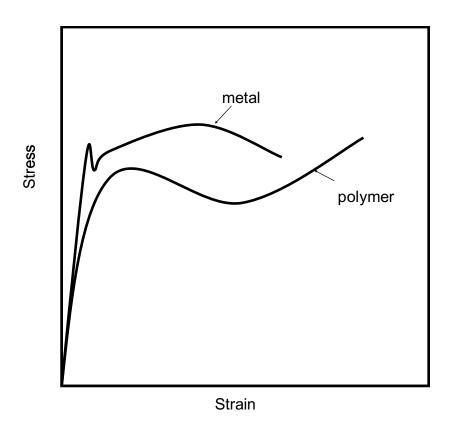
Polymer Processing


Outline

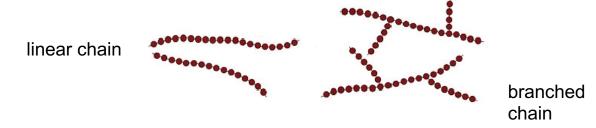
- Polymer Basics
- Injection Molding
 - Process description
 - Analysis
- Compression Molding
- Blow Molding

Polymer Basics

Definition


- poly = many
- mer = basic recurring molecule
- Polymers are long chain of recurring basic molecules

Polymer Properties

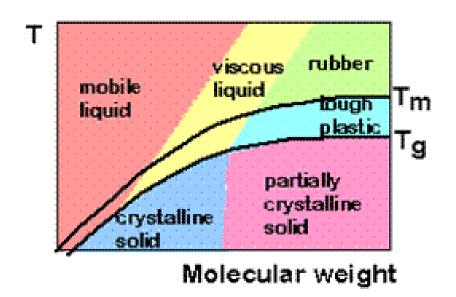

- Low density
- Low electrical and thermal conductivity
- Low strength and stiffness
- High strength-to-weight ratio
- Good resistance to chemicals
- Wide choice of colors and transparencies
- Ease of manufacturing
- Relatively low cost

Polymers: Mechanical Properties

Comparison of metal and polymer

- Thermoplastics
 - Molded and remolded by heating
 - posses linear and branched chains
 - PMMA, polycarbonate (PC), polyethylene (PE), PVC etc.

- Thermosets
 - Solidify by being chemically cured during which long macromolecules cross-link with each other and cannot be remolded
 - Epoxy, polyester, polyimides etc.


Thermoplastics vs. Thermosets

Thermoplastics

- Little cross linking
- Ductile
- Soften with heat

Thermosets

- Large cross linking
- Hard and brittle
- Do not soften with heat

Elastomers

 Undergo large extension without fracture and recover quickly after the load is removed (lightly cross-linked which permits almost full extension of molecules)

Rubber, Silicone etc.

Thermoplastics

Characteristics	Applications
 Mechanical properties vary with temperature Exhibit creep behavior Molecules oriented in direction of elongation Hygroscopy (water absorption) in some thermoplastics High coefficient of friction 	 Bottles Cable insulators Tape Blender bowls Medical syringes Textiles

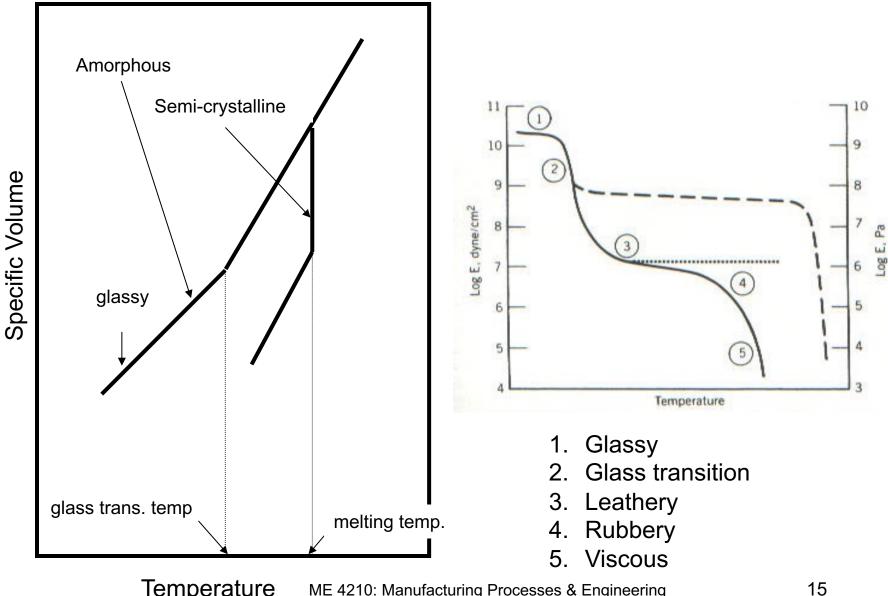
Thermosets

Characteristics	Applications
 High thermal stability and insulating properties High rigidity and dimensional stability Resistance to creep and deformation under load Light-weight 	 Glues Automobile body parts Matrix for composites in boat hulls and tanks

Elastomers

Characteristics	Applications
Recover large deformation	• Tires
 High friction and nonskid surfaces 	 Hoses
Corrosion resistance	 Footwear
Electrical insulation	Linings
 Shock and vibration insulation 	 Gaskets
	 Seals

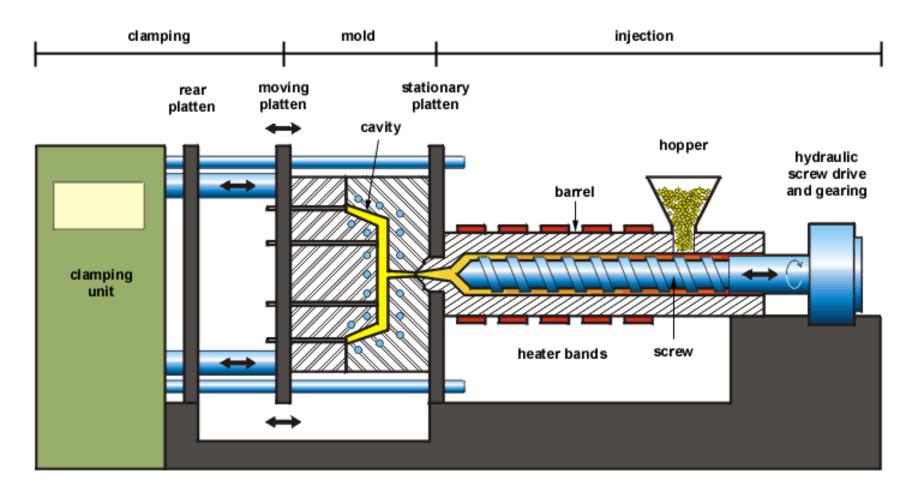
- Based on degree of crystallinity:
 - 1. Amorphous
 - 2. Semicrystalline



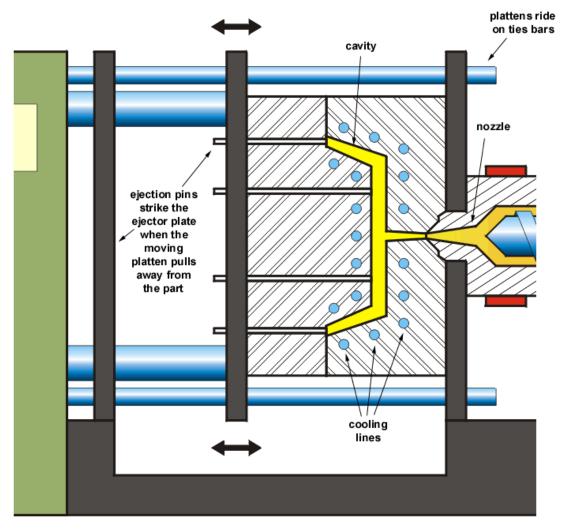
Amorphous

- Molecular chains intertwine with each other with irregular packing
- Amorphous polymers exhibit a distinct change in mechanical properties across narrow range of temperatures

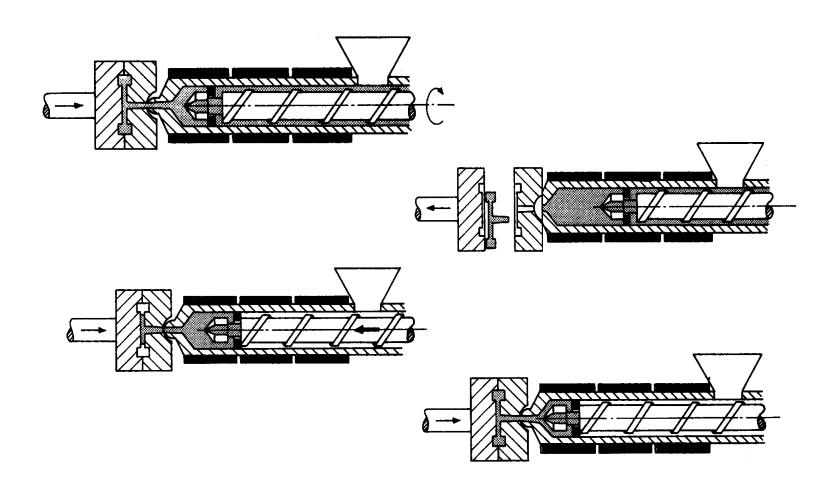
- Semi-crystalline
 - Some molecular chains are packed in an orderly manner and some in an irregular manner
 - The degree of crystallinity greatly influences the mechanical and physical properties
 - With increase in degree of crystallinity, polymers become stiffer, harder, less ductile, denser and more resistant to heat


Properties – Amorphous Vs. Semi-crystalline

Injection Molding Machine



Injection Molding Schematic


schematic of thermoplastic injection molding machine

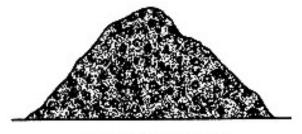
Mold Schematic

mold area detail

Process

Process

- Pellets placed in hopper
- Pellets fall into barrel through throat
- Pellets packed to form solid bed
 - air forced out through hopper
- Pellets melted by mechanical shear between barrel and screw


Mold

ME 4210: Manufacturing Processes & Engineering Ramesh Singh

Injection Molded Parts

BEFORE

POLYETHYLENE

AFTER

Injection Molding

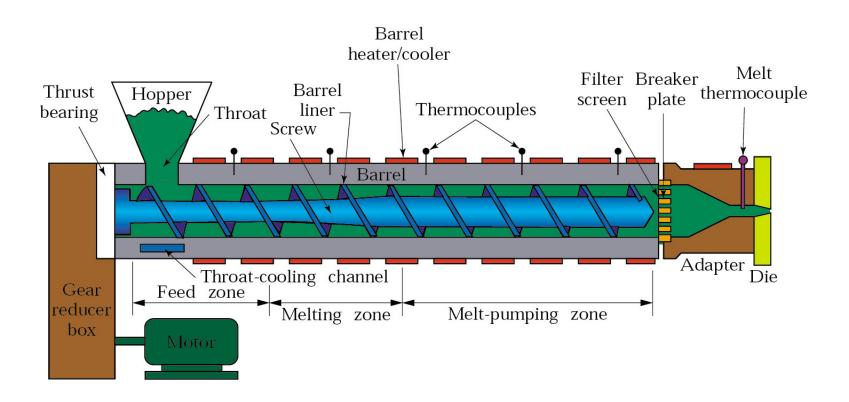
Process Characteristics

- Utilizes a ram or screw-type plunger to force molten plastic material into a mold cavity
- Produces a solid or open-ended shape conforming to the mold cavity
- Uses thermoplastic or thermoset materials
- Produces a parting line and sprue and gate marks
- Ejector pin marks are usually present

Process Capabilities

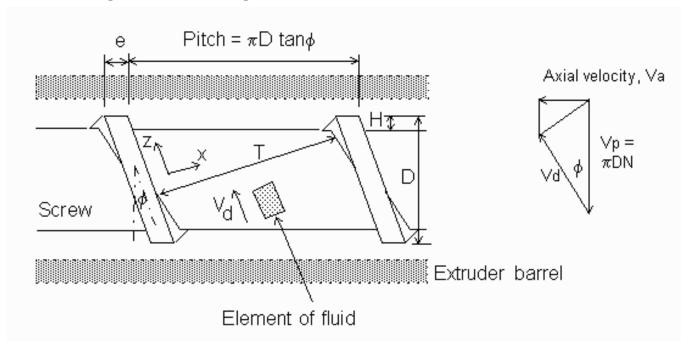
- Cycle time 10-60 s
- Economical for high production runs > 10,000
- Maximum section = 13 mm
- Minimum section = 0.4 mm for thermoplastics, 1 mm for thermosets
- Size = 10 g -25 kg for thermoplastics, 6 kg max. for thermosets
- Tolerance (typical)
 - $-\pm 0.1 \, {\rm mm}$
- Surface roughness is a function of die condtion
 - 0.2-0.8 μm is obtainable

Injection Molding


Advantages

- Very complex shape and intricate details possible
- Highly automatic process
- Fast cycle time
- Widest choice of materials

Limitations


- It has high capital cost
- Economical for large numbers of parts
- Large pressures in mold (20,000 psi)
- Complicated runner and gating system

Extrusion

Flow in screw - Injection molding and Extrusion

- Understood through simple fluid analysis
- Unroll barrel from screw
 - rectangular trough and lid

Flow analysis

- Barrel slides across channel at the helix angle
- $v_d = drag$

• $v_x = stirring$

Moving $V = \pi DN$ V_d V_x V_x V_z V_z

Barrel is modeled as Moving top plate

Screw bottom is assumed as stationary

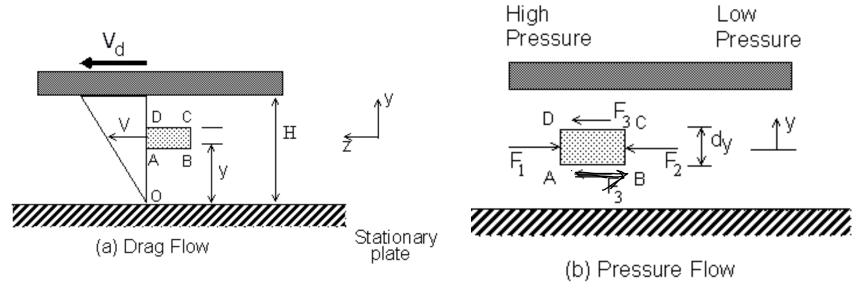
Flow rate

- v_d shows viscous traction work against exit pressure
- η

flow rate = f(exit pressure, v_d , η , T, h, L)

Analysis of Injection Molding

Motivation


To compute flow rate of melt in the extruder

Assumptions

- Newtonian fluid
- Separate into drag and pressure flows
- No slip at walls
- Incompressible
- Laminar flow
- End and side effects are negligible

Drag and Pressure Flow

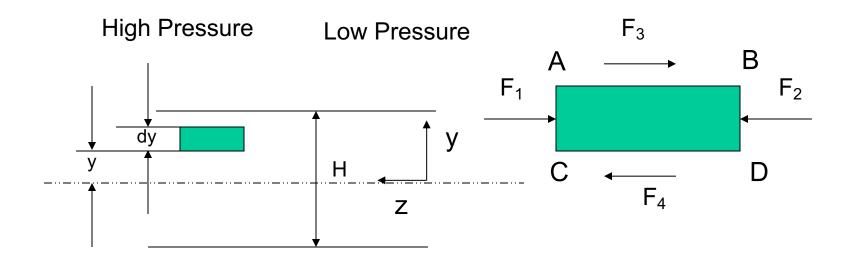
- Drag Flow is due to the interaction of the rotating screw and stationary barrel.
- Pressure Flow due to the pressure gradient which is built up along the screw.

Drag and pressure flow

Drag Flow

 For the small element of fluid ABCD the volume flow rate dQ is given by:

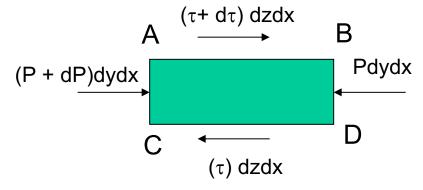
$$dQ = V. dy . dx$$


If the velocity gradient is assumed to be linear,

$$V = V_d (y/H)$$

$$Q_d = \iint_0^H \frac{y.V_d}{H}.dy.dx$$

$$Q_d = (1/2) T H V_d$$


Pressure Flow

Free body diagram of the fluid element

Pressure Flow

• Let P be the pressure and τ be the shear stress acting on the fluid element ABCD. Hence, the forces acting on that element are:

Force balance yields,

$$\frac{dP}{dz}dy = -d\tau$$

Pressure Flow

Integrating the above equation to give the shear stress at any distance y from the centerline,

$$\int_{0}^{+y} \frac{dP}{dz} dy = \int_{0}^{\tau y} d\tau \qquad - y \frac{dP}{dz} = \tau_{y}$$

$$\tau_y = \eta \ \dot{\gamma} = \eta \ \frac{dV}{dy}$$

Substituting and Integrating from base to a distance y from center,

$$-y\frac{dP}{dz} = \eta \frac{dV}{dy} \qquad \qquad -\int_{0}^{V} dV = \frac{1}{\eta} \frac{dP}{dz} \int_{0}^{y} y dy$$

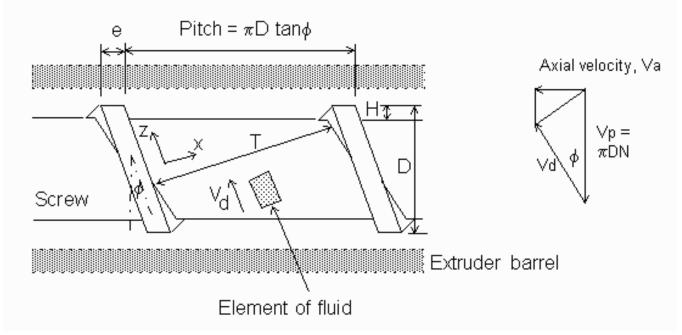
$$-V = \frac{1}{\eta} \frac{dP}{dz} \left(\frac{y^2}{2} - \frac{H^2}{8} \right)$$

Pressure Flow

Now, the volume flow rate is given by:

$$dQ = V T dy$$

Substituting for V and integrating to get the pressure flow, Qp


$$Q_P = -\frac{1}{12\eta} \frac{dP}{dz}.TH^3$$

$$Q = Q_d + Q_p$$

$$Q = (1/2) T H V_d - \frac{1}{12\eta} \frac{dP}{dz} . TH^3$$

Pressure Flow

We are interested in the fluid flow in the extruder as it is dragged along by the relative movement of the screw and barrel.

Details of extruder screw

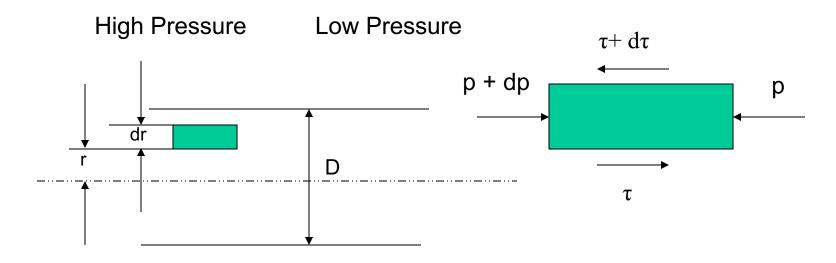
Pressure Flow

For the case shown in extruder, where the fluid element is between the two flights, assuming e is small, T is approximated by:

$$V_d = V_{barrel}.cos\phi$$

 $V_d = \pi DN.cos\phi$

 $T = \pi D \tan \phi \cos \phi$


where,

$$\sin \varphi = \frac{dL}{dz}$$
 and $\frac{dP}{dz} = \frac{dP}{dL} \sin \varphi$

In terms of extruder geometry,

$$Q_p = -\frac{\pi D H^3 \sin^2 \varphi}{12\eta} \frac{dP}{dL}$$

Flow in Round Runner or Die

Free body diagram of the fluid element

Flow in Round Runner or Die

Equilibrium equation will yield,

$$\pi \cdot [(r+dr)^2 - r^2] \cdot dp = 2\pi \cdot [(r+dr) \cdot (\tau + d\tau) - r\tau] \cdot dz$$

Integrating and applying boundary conditions total flow is,

$$Q_p = \int_{0}^{R} 2\pi r \cdot u \cdot dr = \frac{\pi \cdot R^4}{8 \, \eta} \cdot \frac{\Delta p}{L}$$

Example

You are extruding a polymer material through a steel die. The density of the polymer is 980 kg/m³. At processing temperature, its viscosity (µ) is 10³ N-s/m². The internal diameter (D) of the barrel of the machine's extruder is 28 mm, with a flight width (T) of 21 mm, and a flight depth (H) of 4 mm. The helix angle of the screw (φ) is 15 degrees. The screw is 1.25 m in axial length. The die is a cylinder 5 mm in diameter and 40 mm long. You may assume the barrel rotates and the screw is stationary. Determine the RPM of the screw to make product at a linear velocity of 10 cm/s?

Solution

The melt enters the die from the extruder hence for steady state the flow rate should be the same and the pressure drop should also be the same:

```
Q_{extruder} = Q_{die}
\Delta P_{extruder} = \Delta P_{die}

Given:

V_{die} = 10 \text{ cm/s}
D_{die} = 5 \text{ mm}

D_{die} = 5 \text{ mm}

D_{die} = 40 \text{ mm}
```

Solution

From round die analysis,

$$Q_{die} = \frac{\pi \cdot R^4}{8 \, \eta} \cdot \frac{\Delta p}{L}$$

$$\frac{\pi (2.5 \times 10^{-3})^4 \Delta P}{8(10^3)(40 \times 10^{-3})} = 1.96 \times 10^{-6}$$

 $\Delta P = 5.12 \text{ MPa}$

Using the extruder flow,

$$Q_{\text{extruder}} = (1/2) \text{ T H V}_{\text{d}} - \frac{1}{12\eta} \frac{\text{dP}}{\text{dz}} \text{.TH}^3$$

Solution

$$\frac{dP}{dz} = \frac{\Delta P}{L_{extruder}/\sin \varphi}$$

Solving for V_d (velocity in the barrel channel),

$$V_d = 0.0467 \text{ m/s}$$

$$V_d = V_{barrel}.cos\phi$$

$$V_{\text{barrel}} = \frac{\pi DN}{60}$$

$$N = 33.01 \text{ rpm}$$

Injection molding cycle

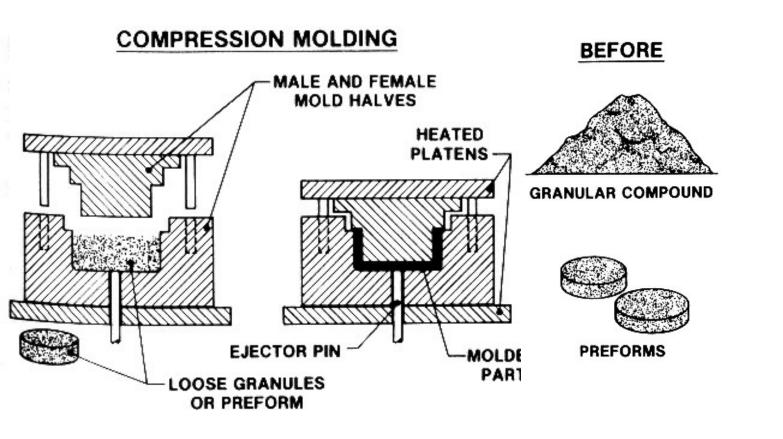
- 1. To make a shot: use screw (extruder) equation for flow rate (Q) to produce a shot volume (vol = Q*t).
 - back pressure gives dp term
 - time (t) bounded by cycle time (upper) and degradation of material (lower)

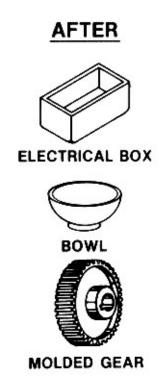
Injection molding cycle

- To inject the plastic: use pressure flow equations and injection pressure (Δp) or injection time (t) and volume to be filled (shot volume) to determine flow rate (Q) and hence time (t) or injection pressure (Δp) required to fill mold
 - injection time (t) will be limited by freezing of plastic and degradation of material

Injection Molding - Ex. 1-1

- Injection mold a polymer in a steel tool
- Model the sprue, runner and part as a cylinder of diameter 10 mm, length 150 mm
- Determine the screw RPM to make a shot in less than 3 seconds (Assume screw rotates)
- Determine the injection pressure to make the part in 2 seconds


Injection Molding - Ex. 1-2


- polymer density (ρ) = 980 kg/m³
- polymer viscosity (η) = 10³ N-s/m²
- barrel diameter (D) = 28 mm
- flight width (w) = 21 mm
- flight height (H) = 4 mm
- helix angle (ϕ) = 15 degrees
- length of screw (L) = 1.25 m

Injection Molding - Ex. 1-3

- Screw RPM calculation
- Back pressure = 15 MPa
- Assume 3 seconds to make shot
- Calculate Q

Compression Molding

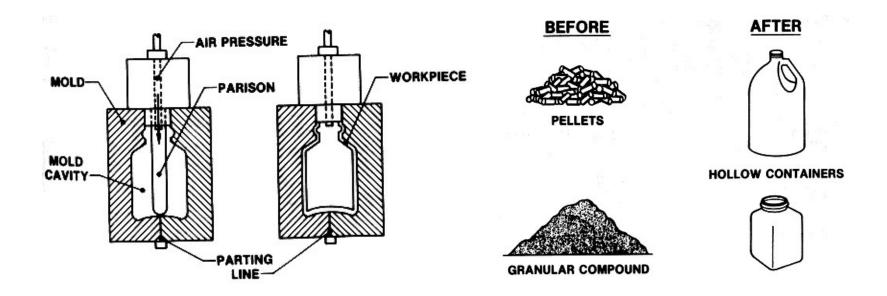
Process Characteristics

- Uses thermoset preforms or granules
- Materials are usually preheated
- Material must be accurately measured to maintain uniform size or to avoid excess flash
- Metallic inserts may be molded into the product
- Shape must not have undercuts
- Requires no sprues, gates, or runners

Process Capabilities

- Cycle time 20-600 s
- Production runs > 1,000 may be 100 for small parts
- Maximum section = 25 mm
- Minimum section = 0.25 mm
- Size = 10 g 15 kg
- Allowance
 - $-\pm 0.1 \, \text{mm}$
- Surface roughness is a function of die condition
 - $-0.2-0.8 \mu m$ is obtainable

Compression Molding


Advantages

- It has lower mold pressures (1000 psi)
- Minimum damage to reinforcing fibers (in composites)
- Large parts are possible

Limitations

- Very complex shape and intricate details not possible
- Requires more labor
- longer cycle than injection molding
- Each charge is loaded by hand
- Air entrapment possible

Blow Molding

Process Characteristics

- Inflates a softened parison tube to the contour of a mold cavity
- Uses thermoplastics
- Forms thin-walled hollow products
- Parting lines are present
- Wall thickness can be increased by increasing the parison tube wall thickness
- Flash is present but is minimal

Process Capabilities

- Production rates 100-2500 pieces/hr
- Production runs can be as high as 10,000,000
- Maximum section = 6 mm
- Minimum section = 0.25 mm
- Size = 10 g 15 kg
- Tolerance (typical)
 - $-\pm 0.1 \, \text{mm}$
- Surface roughness is a function of pressure

Blow Molding

Advantages

- It can make hollow parts (especially bottles)
- Stretching action improves mechanical properties
- Has a fast cycle
- Not labor intensive

Limitations

- It has no direct control over wall thickness
- Cannot mold small details with high precision
- Requires a polymer with high melt strength

Summary

- Polymer properties
- Injection molding basics
- Analysis of polymer flow
- Compression molding
- Blow molding