Drilling Process and Tool Geometry

Prof. S. S. Pande

Mechanical Engineering Department Indian Institute of Technology, Bombay

Outline

- · Hole making Processes Overview
- Drill Point Geometry
- Mechanics of Drilling
- Problems in Drilling
 - Special Drill Points

What is a Hole?

Internal *functional* Cavity or a *Passage* in a part.

Applications

- · Coolant (Fluid) Flow
- Lubrication passage
- · Fastener locations for Assembly
- Motion between parts

Types of Holes

- · Circular / Noncircular
- · Through/ Blind
- · Plain/ Threaded
- Compound
 - Counter Bore
 - Counter Sunk

Hole Requirements

- · Based on Diameter
 - Normal range
 - Micro holes -50 -1000 microns
- · Based on L/D ratio
 - Normal range (L/D < 5)
 - Extra Long and Deep Holes

Hole making Processes

- Hole Generation
 - Drilling, Punching, EDM, LBM, EBM
- Hole Enlargement
 - Core drilling, Counter Bore/ Sunk, WEDM
- Hole Finishing
 - Reaming, Boring, Grinding

Drill Point Geometry

- Drill a complex cutting tool
- Two cutting edges (Lips)
- · Curved Rake and Relief surfaces
- Complex cone point geometry
- · Oblique cutting phenomena
 - Severe chip deformations

Elements of a Drill Point

- Cone Point Roof Top geometry
 - Point Angle
- Helix Angle
- Rake Angles
 - Axial and Normal
- Chisel Edge
- Web Thickness/ web Taper
- · Clearance / Relief angles

Drill Point Angle

- · Governs Smoothness of drill entry into part
- · Decides cutting edge Lip length for a drill diameter

$$L = \frac{D}{2 \sin Q}$$
 , Point angle = 2Q

- Governs relation Normal and Axial Rake angles
- Point angle depends on work material

Helix and Rake Angles

- · Helix angle at drill periphery is
 - · Axial Rake angle
- Cutting edge Lip has a Curved Rake face
- · Axial and Normal Rake angles exist for a lip
- · Rake angle varies along the drill Lip
 - Reduces towards axis
 - Negative at Chisel edge (near axis)

Web and Chisel Edge

- · Web Material between Drill Flutes
- · Governs Torsional rigidity of drill
- Trade off Flute area (Volume) and Rigidity
- · Web thickness varies in Regrinding
 - Web Taper

Chisel Edge

- · Sharp edge
 - · Intersection of cone point surfaces
- · Non cutting action at chisel edge
 - Indentation
 - Near zero velocity
- · Generates Very High Axial Force
 - 60-70 % of Thrust Force

Mechanics of Drilling

Chip area per lip = $\frac{f.D}{4}$

 $MRR = \frac{\Pi}{4} D^2 f N$

Forces in Drilling

Thrust Force $F = f(P_x)$

Torque $M = f(P_z)$

Torque and Thrust

<u>Thrust Force</u>: $F = C_1 HB.D^{n_1} f^{n_2}$

: $M = C_2 HB.D^{n_3} f^{n_4}$ **Torque**

- C₁, C₂, n₁, n₂, n₃, n₄ Constants

depend on work material.

Experimentally derived empirical equations.

Oxford Equation

Thrust F (N)

 $F = 10^6 \times (0.195 HB f^{0.8} D^{0.8} + 0.0022 HB D^2)$

Torque M (Nm)

 $M = 2x10^6 HB^{0.7}D^2f^{0.8}$

HB = Brinell Hardness Number of material

D = Drill diameter in m
F = feed in m/rev

Machining Time

L = Lip Height

H = Hole depth

O = Overtravel (Thru)

f = feed mm/rev

N = rpm

Machining Time (t)

$$t = \frac{L + H + O}{f.N}$$

Problems in Drilling

- Drill walk and wobble
 - Lack of Centering Location error
 - Oversize holes Circularity error
- · Axis bending Straightness error
- Burr production
 - Material extruded but not cut

Primary Cause

- Large Axial Thrust force *Chisel Edge* Unequal lips –wobble

Special Drill Points

- Split point
 - 4 Facet Drill, Crankshaft point
- Spiral Point
 - Spiro Helicoidal relief surface
 - S shaped chisel edge
 - Significant reduction in Thrust force

Spiral Point Geometry

Excellent Self Centering Burr control