Design of Linear Micro Positioning Stage for High Speed Micro Machining Center

ME423 : Machine Design

Prof. Ramesh Singh

Indian Institute of Technology, Bombay

Oct 2019

Prepared by: Kevin C. Prajapati T.A. (M.Tech)

Content

- Flowchart of Design
- Ball Screw Design
- Support unit design
- Linear Guide Design
- Validation of Assembly
- > CAD models

G Flowchart of linear stage design

• Accuracy: less than 2 μm

- Travel : 100mm
- Max. speed: 100 mm/s
- Resolution : $1 \, \mu m$

From Experimental machining data

Ball Screw Design

?

Accuracy grade of ball screw	C3 class (JIS B 1192 – 1997) (Travel distance error 8 μm and fluctuations 8 μm)			
Material	1045 carbon steel			
Screw shaft length	100 mm(stroke) + 35 mm (Nut length) + 70 mm (Unthreaded length)			
Mounting Method	Fix-Supported mounting			
Lead	Speed×60 RPM Stepper motor (1500 rpm max.) Discreet and Jerky motion for 0.01 mm/s 200W AC servo motor with Max. 6000 rpm and rated rpm 3000-4000 rpm			
Encoder Resolution	5000 lines/rev			
Shaft diameter	10 mm			

BNK 1002-3RRG0+193LC3Y

Specifications	True Value
Lead	2 mm
Stroke	100 mm
Shaft outer diameter	10 mm
Ball circle diameter	10.3 mm
Thread minor diameter	9 mm
Screw shaft length	135 mm
Total ball screw length	193 mm
Basic static load rating C ₀	2.9 kN
Basic dynamic load rating C _{0a}	1.5 kN
Weight of the shaft (0.47kg/m)	0.09 kg
Weight of nut	0.045 kg
Preload torque	0.025 Nm
Rigidity value	100 N/μm

1) Permissible speed criteria

• Critical speed of the screw shaft:

$$N_{1} = \frac{60 \times \lambda_{1}^{2}}{2\pi \times l_{b}^{2}} \times \sqrt{\frac{E \times 10^{3} \times I}{\gamma \times A}} \times 0.8 \ rpm$$
$$N_{1} = \lambda_{1} \times \frac{d_{1}}{l_{b}^{2}} \times 10^{7}$$
$$74567 \text{ RPM}$$

• DN value:

 $l_{b} = \text{Distance between two mounting surfaces (mm)}$ E = Young's modulus (2.06×105 N/mm²) I = $\frac{\pi}{64} \times d_{1}^{4}$ $d_{1} = \text{screw} - \text{shaft thread minor diameter (mm)}$ $\lambda_{1} = \text{Density (specific gravity) (7.85×10- 6kg/mm³)}$ A = Screw shaft cross - sectional area (mm²) Fixed - supported: $\lambda_{1} = 3.927$, $\lambda_{2} = 15.1$.

 N_2 = Permissible rotational speed determined by the DN value (rpm)

D = Ball center to center distance (10.3 mm)

2) Design axial loads

- Static load = 5 kg
- Machining load = F_{MH} = 50 N and F_{MV} = 100 N
- Direction change loading Force acting on the ball screw = $\frac{\text{change in the momentum}}{\text{time}}$ = $\frac{5 \times (0.100 + 0.100)}{100} = 10 \text{ N}$
- Accelerating or decelerating loads = 10 N
- Friction force

 $F_F = \mu(mg + F_{MV}) = 0.005(50 + 100) = 0.75 N$

Maximum axial load = 60.75 N

Now, Compare maximum axial load with buckling load and maximum tensile load

2) Design axial loads

• Buckling load on the screw shaft:

$$P_{1} = \frac{\eta_{1} \times \pi^{2} \times E \times I}{{l_{a}}^{2}} \times 0.5$$
$$P_{1} = \eta_{2} \times \frac{{d_{1}}^{4}}{{l_{a}}^{2}} \times 10^{4} = 16200 \text{ N}$$

• Permissible load on the screw shaft

$$P_2 = \sigma \times \frac{\pi}{4} \times {d_1}^2$$

 $P_2 = 116 \times {d_1}^2 =$ **16704** N

Fixed – supported: $\eta_1 = 2, \eta_2 = 10$

 σ = Permissible stress (147 MPa)

3) Validation of ball screw as a rotating shaft

• Bending moment and torque criteria:

 R_{1a} = 31 N, R_{2a} = 119 N and maximum BM at the center M_a = 8.1 Nm R_{1b} = -22.1 N, R_{2b} = 22.1 N and maximum BM at the center M_b = 3 Nm

$$M = \sqrt{M_a^2 + M_b^2} = 8.5 \text{ Nm}$$

Torque varies from 0 Nm to 0.27 Nm

ASME standard Modified Goodman Criteria =
$$d = \left\{ \frac{32N_f}{\pi} \left[\frac{\sqrt{\left(K_f M_a\right)^2 + \frac{3}{4} \left(K_{fs} T_a\right)^2}}{S_f} + \frac{\sqrt{\left(K_{fm} M_m\right)^2 + \frac{3}{4} \left(K_{fsm} T_m\right)^2}}{S_{ut}} \right] \right\}^{\frac{1}{3}}$$

Factor of Safety = $N_f = 2$ Fatigue stress concentration factors = 1 M_a = Amplitude of moments = $\frac{8.5 - (-8.5)}{2} = 8.5 Nm$ M_m = Mean of the moments = $\frac{8.5 + (-8.5)}{2} = 0 Nm$ T_a = Amplitude of the torque = $\frac{0.27 - (0)}{2} = 0.135 Nm$ T_m = Mean of the torque = $\frac{0.27 + (0)}{2} = 0.135 Nm$

 S_f = Fatigue strength = 250×10⁶ N/m² S_{ut} = Ultimate tensile strength = 565×10⁶ N/m²

Minimum allowable diameter = 8.85 mm

3) Validation of ball screw as a rotating shaft

• Shear stress criteria:

 R_{1a} = -37.5 N, R_{1b} = 187.5 N and maximum at the position where nut is, which is V_a = 187.5 N

 R_{2a} = -22.1 N, R_{2b} = 22.1 N and maximum at the position where nut is, which is V_b = 22.1 N

$$V = \sqrt{V_a^2 + V_b^2} = 188.8 \text{ N}$$
$$d = \left[\frac{4 \times N_f \times V}{\pi \times S_s}\right]^{\frac{1}{2}} = 1.54 \text{ mm}$$

 $S_s = \text{Ultimate shear strength} = 200 \times 10^6 N/m^2$

• Static safety factor:

$$f_a = \frac{C_{0a}}{F_a}$$

 F_a = Permissible Axial Load (N) = 60.75 N

 C_{0a} = Basic static load rating (N) = 2900 N

 f_a = Static safety factor

Static safety factor, $f_a = 47$

• Nominal life:

Flaking phenomenon (raceways break from the fatigue)

Service life v/s Nominal life

$$L = \left(\frac{C_a}{f_w \times F_{av}}\right)^3 \times 10^6$$

L = Nominal life (rev) (total number of revolutions)

 C_a = Basic dynamic load rating (N)

 F_{av} = Average axial load (N)

 f_w = Load factor = 1.2 for considering medium vibration

• Average dynamic stroke loading:

$$F_{av} = \sqrt[3]{\frac{1}{l}} \left(F_{a1}^{3} l_{1} + F_{a2}^{3} l_{2} + \dots + F_{an}^{3} l_{n} \right)$$

- F_{av} = Average axial load (N)
- $F_{an} =$ Varying load (N)
- l_n = Distance travelled under load F_{an}
- l = Total travelled distance

ball screw

• Nominal life:

$$L = \left(\frac{C_a}{f_w \times F_{av}}\right)^3 \times 10^6$$
$$L = 29841.1 \times 10^6 revolution$$
$$L_h = 16.57 \times 10^4 hours \text{ (3000 rpm)}$$
used for 8 hours per day, the Nominal life of the ball

in years is 56.57 years.

- *L* = Nominal life (rev) (total number of revolutions)
- C_a = Basic dynamic load rating (N)
- F_{av} = Average axial load (N)
- f_w = Load factor = 1.2 for considering medium vibration

Fixed side selected support unit :

Double row angular contact bearing

Model no: EK 8

Bearing Model: 7000 DF P5

Inner diameter: 8 mm

Basic dynamic load rating, C_a: 2.93 kN

Permissible load: 2.15 kN

Weight: 0.46 kg

Rigidity: 49 N/um

Supported side selected support unit : Deep grove ball bearing Model no: EF8 Bearing Model: 606ZZ Inner diameter: 8 mm Basic dynamic load rating, C: 2.19 kN Basic static load rating, CO: 0.87 kN Fatigue load limit, Pu: 0.057 kN Reference speed: 75000 rpm Limiting speed: 38000 rpm Weight: 0.33 kg Calculation factor, k_r: 0.025 Calculation factor, f_0 : 12

Loads and Reaction calculation

• Loads on fixed side bearing:

 F_x = 58.27 N F_y = -16.68 N F_z = 2.01 N

axial load, $F_a = 60 \text{ N}$ Radial load, $F_r = \sqrt{F_y^2 + F_z^2} = 16.80 \text{ N}$

Loads and Reaction calculation

• Loads on supported side bearing:

 F_x = 25.77 N F_y = 12.85 N F_z = -0.48 N

axial load, $F_a = 26 \text{ N}$ Radial load, $F_r = \sqrt{F_y^2 + F_z^2} = 12.86 \text{ N}$

Fixed side bearing design

Dynamic Equivalent Load $P_e = XVP_r + YP_a$

$$\frac{F_a}{F_r} = \frac{60}{16.80} = 3.5 > 0.8$$
(From SKF catalog)
X = 1
Y = 0.78
V = 1

equivalent radial force, $P_e = 63.6 N$

Fixed side bearing design

• Bearing safety factor (safety modulus)

$$f_s = \frac{C_{0r}}{P_e}$$

For the selected bearing, $C_{0r} = 2150 \text{ N}$

Therefore, safety factor, $f_s = 33.8$

Service life

$$L_{10} = \left(\frac{C}{P_e}\right)^3$$

 $L_{10} = Basic life rating$

C =Basic dynamic load rating

For the selected bearing, C = 2.93 kN

 $L_{10} = 86310.23$ million revolution

$$L_{10h} = \frac{10^6}{60 \times n} \times L_{10}$$

$$L_{10h} = 47.95 \times 10^4 hours$$

used for 8 hours per day, the Nominal life of the ball screw in years is 164 years.

Supporting side bearing design

From the SKF catalog,

Selection factor, $f_0=12$

Static load rating, C₀=1.4 kN

So, the factor, $\frac{f_0 F_a}{c_0} = 0.942$

After interpolation,

e = 0.265 (bearing selection factor)

X = 0.56

Y = 1.67

Since
$$e < \frac{F_a}{F_r} \dashrightarrow P_e = 0.56F_r + 1.67F_a$$

equivalent radial load, $P_e = 50.62$ N.

$\frac{f_0 F_a}{C_0}$	Bearing selection factor (e)	Radial factor (X)	Axial factor (Y)	
0.689	0.26	0.56	1.71	
1.03	0.28	0.56	1.55	

Supporting side bearing design

• Bearing safety factor (safety modulus)

$$f_s = \frac{C_{0r}}{P_e}$$

For the selected bearing, $C_{0r} = 870 \text{ N}$

Therefore safety factor, $f_s = 17.18$

Service life

$$L_{10} = \left(\frac{C}{P_e}\right)^3$$

 $L_{10} = Basic life rating$

C =Basic dynamic load rating

For the selected bearing, C = 3.35 kN

 $L_{10} = 80977.79$ million revolution

$$L_{10h} = \frac{10^6}{60 \times n} \times L_{10}$$

$$L_{10h} = 44.98 \times 10^4 hours$$

used for 8 hours per day, the Nominal life of the ball screw in years is 154 years.

□ Linear guide Design

LM guide - caged ball type (miniature in size, light weight and compact)

Selected LM guide: SRS 9XN

```
Basic dynamic load rating, C_0 = 3.48 KN
```

Basic static load rating, C_{0a} = 3.98 KN

Linear guide Design

For designing:

Identify maximum force acting on the LM block at any time of machining

Maximum when machining is done on the LM block

FEM analysis done for loads at different places and direction to find out highest load on LM blocks

□ Linear guide Design

• Maximum lateral load condition:

• Maximum radial load condition:

	Block 1	Block	Block 3	Block 4		Block 1	Block 2	Block 3	Block 4
		2							
Radial load	110.93	-59.48	151.11	-36.07	Radial load	197.96	27.42	63.86	-122.77
Fr (N)					Fr (N)				
Lateral load	-9.52	-3.97	-59.54	12.735	Lateral load	20.58	25.69	-29.57	42.09
Ft (N)					Ft (N)				

So taking maximum radial load Fr = 200 N and maximum lateral load Ft = 60 N.

Linear guide Design

• Equivalent load:

$$P_e = XP_R + YP_T$$

 P_R = Radial load (N) = 200 N

 P_T = Lateral load (N) = 60 N

X, Y: Equivalent factor

For the selected guide, X=1 and Y = 0.839

Therefore, equivalent load, $P_e = 250.16 \text{ N}$

• Safety factor calculation:

When the radial load is large, static safety factor is defined by

$$\frac{F_T F_H F_C C_0}{P_R} \ge f_s$$

 f_s = Static safety factor F_C = Contact factor F_H = Hardness factor F_T = Temperature factor For the selected guide, F_T = F_H = F_C =1 and static load rating, C_0 =3980 N

$$f_s \le \frac{3980}{250.16} = \mathbf{15.9}$$

□ Linear guide Design

• Nominal life calculation:

$$L = \left(\frac{f_h f_t f_c}{f_w} \times \frac{C}{P_m}\right)^3 \times 50$$

- L = Nominal life (km)
- C = Basic dynamic load rating (N)
- P_m = Average dynamic load (N)
- f_h = Hardness factor
- f_t = Temperature factor
- f_c = Contact factor
- f_w = Load factor

Linear guide Design

• Calculating average dynamic load:

$$P_m = \sqrt[3]{\frac{1}{l}} \left(P_{e_1}{}^3 l_1 + P_{e_2}{}^3 l_2 + \dots + P_{e_n}{}^3 l_n \right)$$

- 1. Accelerating and decelerating motion
- 2. Constant velocity motion
- 3. Machining motion

P_m = **198.58 N**

Forces during the acceleration $F_a = F_I + F_F = 10.75 \text{ N}$ F_r = Weight W = 50 N and deceleration: P_{ra} =19 N (from Ansys) $P_{ta} = 3.5 \text{ N}$ Equivalent radial load, $P_{ea} = P_{ra} + P_{ta} = 22.5 N$ Loads during constant velocity: $F_a = F_F = 0.75 \text{ N}$ F_r = Weight = 50 N $P_{rv} = 13.1 \text{ N}$ $P_{tv} = 3 \text{ N}$ Equivalent radial load, $P_{ev} = P_{rv} + P_{tv} = 16.1 N$ Load during machining: $P_{e} = 250.16 \text{ N}$ (average) machining load)

Linear guide Design

• Nominal life calculation:

$$L = \left(\frac{f_h f_t f_c}{f_w} \times \frac{C}{P_m}\right)^3 \times 50$$

- L = Nominal life (km)
- C = Basic dynamic load rating (N)
- P_m = Average dynamic load (N)
- f_h = Hardness factor
- f_t = Temperature factor
- f_c = Contact factor

 f_w = Load factor

$$f_h = f_t = f_c = 1$$

considering moderate vibrations, $f_w = 1.2$ C_{0a} = 3480 N

nominal life, L = 155729 km $L_h = 43.25 \times 10^4 \ hours$ for 8 hours per day, the service life of the ball screw in years is

148 years.

□ Validation of assembly

• Service life of the system:

Component name	Ball screw & nut	Fixed side support	Supported side support	LM guide
	(L_B)	(L_F)	(L_S)	(L_L)
Service life (million revolution)	29841.1	86310.23	80977.79	77850
Service life (hours)	16.57×10^4	47.95×10^{4}	44.98×10^4	43.25×10^{4}
Service life (years)	57	164	154	148

$$\frac{1}{L} = \frac{1}{L_B} + \frac{1}{L_F} + \frac{1}{L_S} + \frac{1}{L_L}$$

Validation of assembly

• Rigidity of the system:

$$\delta = \frac{F_a}{K}$$

 $\delta=\mbox{Elastic displacement of a feed screw system in the axial direction (µm)$

K = Axial rigidity of ball screw

 F_a = Applied axial load

 $\frac{1}{k} = \frac{1}{k_s} + \frac{1}{k_n} + \frac{1}{k_b}$ k = Axial rigidity of the system k_s = Axial rigidity of screw shaft k_n = Axial rigidity of the nut k_b = Axial rigidity of the bearings

> $k = 32.88 \text{ N/}\mu m$ $\delta = 1.84 \mu m$

□ Validation of assembly

• Deflection of the system: (deflection is in the range of 10^{-9} to 10^{-8} m)

THANK YOU