Design of Linear Micro Positioning Stage for High Speed Micro Machining Center

ME423 : Machine Design
Prof. Ramesh Singh

Indian Institute of Technology, Bombay
Oct 2019

Prepared by: Kevin C. Prajapati T.A. (M.Tech)

\square Content

$>$ Flowchart of Design
> Ball Screw Design
> Support unit design
> Linear Guide Design
$>$ Validation of Assembly
> CAD models

\square Flowchart of linear stage design

- Ball Screw Design

Design Objectives

Model Selection

Validation

- Accuracy: less than $2 \mu \mathrm{~m}$
- Load capacity:

	For X stage
Horizontal	25 kg
Vertical	10 kg

- Travel : 100mm
- Max. speed: $100 \mathrm{~mm} / \mathrm{s}$

From Experimental machining data

- Resolution : $1 \mu \mathrm{~m}$

- Ball Screw Design

Design

 ObjectivesValidation

Accuracy grade of ball screw	C3 class (JIS B $1192-1997$) (Travel distance error $8 \mu \mathrm{~m}$ and fluctuations $8 \mu \mathrm{~m}$)
Material	1045 carbon steel
Screw shaft length	100 mm (stroke) +35 mm (Nut length) +70 mm (Unthreaded length)
Mounting Method	Fix-Supported mounting
Lead	$\frac{\text { Speed } \times 60}{R P M}$ Stepper motor (1500 rpm max.) Discreet and Jerky motion for $0.01 \mathrm{~mm} / \mathrm{s}$ 200W AC servo motor with Max. 6000 rpm and rated rpm $3000-4000 \mathrm{rpm}$
Encoder Resolution	5000 lines/rev
Shaft diameter	10 mm

B Ball Screw Design

- Ball Screw Design

Design

 Objectives
Identification of selecting factors

Model Selection

Validation

Calculation of FOS

1) Permissible speed criteria

- Critical speed of the screw shaft:

$$
\begin{aligned}
& N_{1}=\frac{60 \times \lambda_{1}{ }^{2}}{2 \pi \times l_{b}{ }^{2}} \times \sqrt{\frac{E \times 10^{3} \times I}{\gamma \times A}} \times 0.8 \mathrm{rpm} \\
& N_{1}=\lambda_{1} \times \frac{d_{1}}{l_{b}{ }^{2}} \times 10^{7} \\
& 74567 \mathrm{RPM}
\end{aligned}
$$

$\mathrm{l}_{\mathrm{b}}=$ Distance between two mounting surfaces (mm)
$\mathrm{E}=$ Young's modulus $\left(2.06 \times 105 \mathrm{~N} / \mathrm{mm}^{2}\right)$
$\mathrm{I}=\frac{\pi}{64} \times d_{1}{ }^{4}$
$d_{1}=$ screw - shaft thread minor diameter (mm)
$\lambda_{1}=$ Density (specific gravity) $\left(7.85 \times 10-6 \mathrm{~kg} / \mathrm{mm}^{3}\right)$
$A=$ Screw shaft cross - sectional area (mm^{2})
Fixed - supported: $\lambda_{1}=3.927, \lambda_{2}=15.1$.

- DN value:

$$
\mathrm{N}_{2}=\frac{70000}{\mathrm{D}}
$$

6863 RPM
$\mathrm{N}_{2}=$ Permissible rotational speed determined by the DN value (rpm)
D = Ball center to center distance (10.3 mm)

- Ball Screw Design

Design Objectives

Identification of selecting factors

Model Selection

2) Design axial loads

- Static load $=5 \mathrm{~kg}$
- Machining load $=F_{M H}=50 \mathrm{~N}$ and $F_{M V}=100 \mathrm{~N}$
- Direction change loading

Now, Compare maximum axial load with
buckling load and maximum tensile load

Force acting on the ball screw $=\frac{\text { change in the momentum }}{\text { time }}$

$$
=\frac{5 \times(0.100+0.100)}{0.1}=10 \mathrm{~N}
$$

- Accelerating or decelerating loads $=10 \mathrm{~N}$
- Friction force

$$
F_{F}=\mu\left(m g+F_{M V}\right)=0.005(50+100)=0.75 \mathrm{~N}
$$

Maximum axial load $=60.75 \mathrm{~N}$

- Ball Screw Design

Design Objectives
2) Design axial loads

- Buckling load on the screw shaft:

$$
\begin{array}{cc}
P_{1}=\frac{\eta_{1} \times \pi^{2} \times E \times I}{l_{a}^{2}} \times 0.5 & \text { Fixed }- \text { supported: } \eta_{1}=2, \eta_{2}=10 \\
P_{1}=\eta_{2} \times \frac{d_{1}{ }^{2}}{l_{a}^{2}} \times 10^{4}=16200 \mathrm{~N} &
\end{array}
$$

- Permissible load on the screw shaft

$$
\begin{gathered}
P_{2}=\sigma \times \frac{\pi}{4} \times d_{1}^{2} \\
P_{2}=116 \times d_{1}^{2}=16704 \mathrm{~N}
\end{gathered}
$$

- Ball Screw Design

Design

 Objectives
Identification of selecting factors

Model Selection

Validation

Calculation of FOS

3) Validation of ball screw as a rotating shaft

- Bending moment and torque criteria:
$R_{1 a}=31 \mathrm{~N}, R_{2 a}=119 \mathrm{~N}$ and maximum BM at the center $M_{a}=8.1 \mathrm{Nm}$
$R_{1 b}=-22.1 \mathrm{~N}, R_{2 b}=22.1 \mathrm{~N}$ and maximum BM at the center $M_{b}=3 \mathrm{Nm}$

Plane a

Plane a

Free body diagram

Plane b

Torque varies from 0 Nm to 0.27 Nm

- Ball Screw Design

ASME standard Modified Goodman Criteria $=d=\left\{\frac{32 N_{f}}{\pi}\left[\frac{\sqrt{\left(K_{f} M_{a}\right)^{2}+\frac{3}{4}\left(K_{f s} T_{a}\right)^{2}}}{S_{f}}+\frac{\sqrt{\left(K_{f m} M_{m}\right)^{2}+\frac{3}{4}\left(K_{f s m} T_{m}\right)^{2}}}{S_{u t}}\right]\right\}^{\frac{1}{3}}$
Factor of Safety $=\boldsymbol{N}_{\boldsymbol{f}}=\mathbf{2}$
Fatigue stress concentration factors $=1$
$M_{a}=$ Amplitude of moments $=\frac{8.5-(-8.5)}{2}=8.5 \mathrm{Nm}$
$M_{m}=$ Mean of the moments $=\frac{8.5+(-8.5)}{2}=0 \mathrm{Nm}$
T_{a} =Amplitude of the torque $=\frac{0.27-(0)}{2}=0.135 \mathrm{Nm}$
$T_{m}=$ Mean of the torque $=\frac{0.27+(0)}{2}=0.135 \mathrm{Nm}$

Minimum allowable diameter $=8.85 \mathrm{~mm}$
$S_{f}=$ Fatigue strength $=250 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
$S_{u t}=$ Ultimate tensile strength $=565 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

- Ball Screw Design

Design

 Objectives
Identification of selecting factors

Model Selection

3) Validation of ball screw as a rotating shaft

- Shear stress criteria:
$R_{1 a}=-37.5 \mathrm{~N}, R_{1 b}=187.5 \mathrm{~N}$ and maximum at the position where nut is, which is $V_{a}=187.5 \mathrm{~N}$

$R_{2 a}=-22.1 \mathrm{~N}, R_{2 b}=22.1 \mathrm{~N}$ and maximum at the position where nut is, which is $V_{b}=22.1 \mathrm{~N}$

$$
\begin{aligned}
& V=\sqrt{V_{a}^{2}+V_{b}^{2}}=188.8 \mathrm{~N} \\
& d=\left[\frac{4 \times N_{f} \times V}{\pi \times S_{s}}\right]^{\frac{1}{2}}=1.54 \mathrm{~mm}
\end{aligned}
$$

$S_{S}=$ Ultimate shear strength $=200 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

- Ball Screw Design

```
Design
Objectives
```


- Static safety factor:

$$
f_{a}=\frac{C_{0 a}}{F_{a}}
$$

$F_{a}=$ Permissible Axial Load (N) $=60.75 \mathrm{~N}$
$C_{0 a}=$ Basic static load rating $(\mathrm{N})=2900 \mathrm{~N}$
$f_{a}=$ Static safety factor
Static safety factor, $f_{a}=47$

- Ball Screw Design

- Nominal life:

Flaking phenomenon (raceways break from the fatigue)
Service life v / s Nominal life

$$
L=\left(\frac{C_{a}}{f_{w} \times F_{a v}}\right)^{3} \times 10^{6}
$$

$L=$ Nominal life (rev) (total number of revolutions)
$C_{a}=$ Basic dynamic load rating (N)
$F_{a v}=$ Average axial load (N)
$f_{w}=$ Load factor $=1.2$ for considering medium vibration

- Ball Screw Design

Design Objectives
Identification of
selecting factors

Validation

Calculation of FOS

Nominal life

- Average dynamic stroke loading:

$$
F_{a v}=\sqrt[3]{\frac{1}{l}\left(F_{a 1}{ }^{3} l_{1}+F_{a 2}{ }^{3} l_{2}+\cdots+F_{a n}^{3} l_{n}\right)}
$$

$F_{a v}=$ Average axial load (N)
$F_{a n}=$ Varying load (N)
$l_{n}=$ Distance travelled under load $F_{a n}$
$l=$ Total travelled distance

- Ball Screw Design

Design Objectives selecting factors

Model Selection

Validation

- Average dynamic stroke loading:

$$
\begin{gathered}
F_{01}=F_{I}+F_{F}=10+0.75=10.75 \mathrm{~N} \\
F_{12}=F_{F}=0.75 \mathrm{~N} \\
F_{23}=-F_{I}+F_{F}=-10+0.75=-9.25 \mathrm{~N} \\
F_{34}=F_{M H}+F_{F}=100+0.75=100.75 \mathrm{~N} \\
F_{45}=F_{I}+F_{F}=10+0.75=10.75 \mathrm{~N} \\
F_{56}=F_{F}=0.75 \mathrm{~N} \\
F_{67}=-F_{I}+F_{F}=-10+0.75=-9.25 \mathrm{~N}
\end{gathered}
$$

Average axial force $=40.30 \mathrm{~N}$

- Ball Screw Design

Design Objectives

Identification of selecting factors

Model Selection

Validation

Calculation of FOS

- Nominal life:

$$
\begin{gathered}
L=\left(\frac{C_{a}}{f_{w} \times F_{a v}}\right)^{3} \times 10^{6} \\
L=29841.1 \times 10^{6} \text { revolution } \\
L_{h}=16.57 \times 10^{4} \text { hours }(3000 \mathrm{rpm})
\end{gathered}
$$

$L=$ Nominal life (rev) (total number of revolutions)
$C_{a}=$ Basic dynamic load rating (N)
$F_{a v}=$ Average axial load (N)
$f_{w}=$ Load factor $=1.2$ for considering medium vibration
used for 8 hours per day, the Nominal life of the ball screw in years is 56.57 years.

- Support unit Design

- Support unit Design

Fixed side selected support unit :

Double row angular contact bearing

Model no: EK 8
Bearing Model: 7000 DF P5
Inner diameter: 8 mm
Basic dynamic load rating, $\mathrm{C}_{\mathrm{a}}: 2.93 \mathrm{kN}$
Permissible load: 2.15 kN
Weight: 0.46 kg
Rigidity: $49 \mathrm{~N} / \mathrm{um}$

Supported side selected support unit :
Deep grove ball bearing
Model no: EF8
Bearing Model: 606ZZ
Inner diameter: 8 mm
Basic dynamic load rating, C: 2.19 kN
Basic static load rating, C0: 0.87 kN
Fatigue load limit, Pu: 0.057 kN
Reference speed: 75000 rpm
Limiting speed: 38000 rpm
Weight: 0.33 kg
Calculation factor, $\mathrm{k}_{\mathrm{r}}: 0.025$
Calculation factor, $\mathrm{f}_{0}: 12$

- Support unit Design

Loads and Reaction calculation

- Loads on fixed side bearing:

$$
\begin{aligned}
F_{x} & =58.27 \mathrm{~N} \\
F_{y} & =-16.68 \mathrm{~N} \\
F_{z} & =2.01 \mathrm{~N}
\end{aligned}
$$

axial load, $F_{a}=60 \mathrm{~N}$
Radial load, $F_{r}=\sqrt{{F_{y}}^{2}+F_{z}^{2}}=16.80 \mathrm{~N}$

- Support unit Design

Loads and Reaction calculation

- Loads on supported side bearing:

$$
\begin{aligned}
& F_{x}=25.77 \mathrm{~N} \\
& F_{y}=12.85 \mathrm{~N} \\
& F_{z}=-0.48 \mathrm{~N}
\end{aligned}
$$

A: Static Structural

A Fixed Support
B Cylindrical Support: $0 . \mathrm{m}$
C Displacement
D Displacement 2
E Displacement 3
F Displacement 4
G Force: 50. N
H) Force 2: 60.75 N

1 Force 3: 100. N
1 Force 4: 60.75 N
axial load, $F_{a}=26 \mathrm{~N}$
Radial load, $F_{r}=\sqrt{{F_{y}}^{2}+{F_{z}}^{2}}=12.86 \mathrm{~N}$

- Support unit Design

Fixed side bearing design

Dynamic Equivalent Load $P_{e}=X V P_{r}+Y P_{a}$

$$
\frac{F_{a}}{F_{r}}=\frac{60}{16.80}=3.5>0.8
$$

(From SKF catalog)
$X=1$
$Y=0.78$
$\mathrm{V}=1$
equivalent radial force, $P_{e}=63.6 \mathrm{~N}$

- Support unit Design

Fixed side bearing design

- Bearing safety factor (safety modulus)

$$
f_{s}=\frac{C_{0 r}}{P_{e}}
$$

For the selected bearing, $C_{0 r}=2150 \mathrm{~N}$
Therefore, safety factor, $f_{s}=33.8$

- Service life

$$
\begin{gathered}
L_{10}=\left(\frac{C}{P_{e}}\right)^{3} \\
L_{10}=\text { Basic life rating }
\end{gathered}
$$

$C=$ Basic dynamic load rating
For the selected bearing, $\mathrm{C}=2.93 \mathrm{kN}$

$$
\begin{gathered}
L_{10}=86310.23 \text { million revolution } \\
L_{10 h}=\frac{10^{6}}{60 \times n} \times L_{10} \\
L_{10 h}=47.95 \times 10^{4} \text { hours }
\end{gathered}
$$

used for 8 hours per day, the Nominal life of the ball screw in years is 164 years.

- Support unit Design

Supporting side bearing design

From the SKF catalog,
Selection factor, $\mathrm{f}_{0}=12$
Static load rating, $\mathrm{C}_{0}=1.4 \mathrm{kN}$
So, the factor, $\frac{f_{0} F_{a}}{C_{0}}=0.942$

$\frac{f_{0} F_{a}}{C_{0}}$	Bearing selection factor (e)	Radial factor (X)	Axial factor (Y)
0.689	0.26	0.56	1.71
1.03	0.28	0.56	1.55

After interpolation,
$e=0.265$ (bearing selection factor)
$X=0.56$
$Y=1.67$
Since $e<\frac{F_{a}}{F_{r}} \cdots P_{e}=0.56 F_{r}+1.67 F_{a}$
equivalent radial load, $\mathbf{P}_{\mathbf{e}}=\mathbf{5 0 . 6 2} \mathrm{N}$.

- Support unit Design

Supporting side bearing design

- Bearing safety factor (safety modulus)

$$
f_{s}=\frac{C_{0 r}}{P_{e}}
$$

For the selected bearing, $C_{0 r}=870 \mathrm{~N}$
Therefore safety factor, $f_{s}=17.18$

- Service life

$$
L_{10}=\left(\frac{C}{P_{e}}\right)^{3}
$$

$L_{10}=$ Basic life rating
$C=$ Basic dynamic load rating
For the selected bearing, $\mathrm{C}=3.35 \mathrm{kN}$

$$
\begin{gathered}
L_{10}=80977.79 \text { million revolution } \\
L_{10 h}=\frac{10^{6}}{60 \times n} \times L_{10} \\
L_{10 h}=44.98 \times 10^{4} \text { hours }
\end{gathered}
$$

used for 8 hours per day, the Nominal life of the ball screw in years is 154 years.

\square Linear guide Design

LM guide - caged ball type (miniature in size, light weight and compact)
Selected LM guide: SRS 9XN
Basic dynamic load rating, $\mathrm{C}_{0}=3.48 \mathrm{KN}$
Basic static load rating, $\mathrm{C}_{0 \mathrm{a}}=3.98 \mathrm{KN}$

\square Linear guide Design

For designing:
Identify maximum force acting on the LM block at any time of machining
Maximum when machining is done on the LM block
FEM analysis done for loads at different places and direction to find out highest load on LM blocks

\square Linear guide Design

- Maximum lateral load condition:
- Maximum radial load condition:

	Block 1	Block	Block 3	Block 4
Radial load	110.93	-59.48	151.11	-36.07
Lateral load	-9.52	-3.97	-59.54	12.735

	Block 1	Block 2	Block 3	Block 4
Radial load	197.96	27.42	63.86	-122.77
Lateral load	20.58	25.69	-29.57	42.09

So taking maximum radial load $\mathrm{Fr}=200 \mathrm{~N}$ and maximum lateral load $\mathrm{Ft}=60 \mathrm{~N}$.

- Linear guide Design

- Equivalent load:

$$
P_{e}=X P_{R}+Y P_{T}
$$

$P_{R}=$ Radial load (N) $=200 \mathrm{~N}$
$P_{T}=$ Lateral load (N) $=60 \mathrm{~N}$
X, Y : Equivalent factor
For the selected guide, $\mathrm{X}=1$ and $\mathrm{Y}=0.839$
Therefore, equivalent load, $P_{e}=\mathbf{2 5 0 . 1 6} \mathbf{N}$

- Safety factor calculation:

When the radial load is large, static safety factor is defined by

$$
\frac{F_{T} F_{H} F_{C} C_{0}}{P_{R}} \geq f_{s}
$$

$f_{s}=$ Static safety factor
$F_{C}=$ Contact factor
$F_{H}=$ Hardness factor
$F_{T}=$ Temperature factor
For the selected guide, $\mathrm{F}_{\mathrm{T}}=\mathrm{F}_{\mathrm{H}}=\mathrm{F}_{\mathrm{C}}=1$ and static load rating, $\mathrm{C}_{0}=3980 \mathrm{~N}$

$$
f_{s} \leq \frac{3980}{250.16}=\mathbf{1 5 . 9}
$$

\square Linear guide Design

- Nominal life calculation:

$$
L=\left(\frac{f_{h} f_{t} f_{c}}{f_{w}} \times \frac{C}{P_{m}}\right)^{3} \times 50
$$

$\mathrm{L}=$ Nominal life (km)
$\mathrm{C}=$ Basic dynamic load rating (N)
$\mathrm{P}_{\mathrm{m}}=$ Average dynamic load (N)
$f_{h}=$ Hardness factor
$f_{t}=$ Temperature factor
$f_{c}=$ Contact factor
$f_{w}=$ Load factor

- Linear guide Design

- Calculating average dynamic load:

$$
P_{m}=\sqrt[3]{\frac{1}{l}\left(P_{e 1}{ }^{3} l_{1}+P_{e 2}^{3} l_{2}+\cdots+P_{e n}^{3} l_{n}\right)}
$$

1. Accelerating and decelerating motion
2. Constant velocity motion
3. Machining motion

$$
P_{m}=198.58 \mathrm{~N}
$$

Forces during the acceleration and deceleration:	$\begin{aligned} & F_{a}=F_{I}+F_{F}=10.75 \mathrm{~N} \\ & F_{r}=\text { Weight } \mathrm{W}=50 \mathrm{~N} \\ & P_{r a}=19 \mathrm{~N} \text { (from Ansys) } \\ & P_{t a}=3.5 \mathrm{~N} \end{aligned}$ Equivalent radial load, $P_{e a}=P_{r a}+P_{t a}=22.5 \mathrm{~N}$
Loads during constant velocity:	$\begin{aligned} & F_{a}=F_{F}=0.75 \mathrm{~N} \\ & F_{r}=\text { Weight }=50 \mathrm{~N} \\ & P_{r v}=13.1 \mathrm{~N} \\ & P_{t v}=3 \mathrm{~N} \end{aligned}$ Equivalent radial load, $P_{e v}=P_{r v}+P_{t v}=16.1 \mathrm{~N}$
Load during machining:	$P_{e}=250.16 \mathrm{~N} \text { (average }$ machining load)

\square Linear guide Design

- Nominal life calculation:

$$
\begin{aligned}
& \qquad L=\left(\frac{f_{h} f_{t} f_{c}}{f_{w}} \times \frac{C}{P_{m}}\right)^{3} \times 50 \\
& \mathrm{~L}=\text { Nominal life (km) } \\
& \mathrm{C}=\text { Basic dynamic load rating }(\mathrm{N}) \\
& \left.\mathrm{P}_{\mathrm{m}}=\text { Average dynamic load (} \mathrm{N}\right) \\
& f_{h}=\text { Hardness factor } \\
& f_{t}=\text { Temperature factor } \\
& f_{c}=\text { Contact factor } \\
& f_{w}=\text { Load factor }
\end{aligned}
$$

$$
f_{h}=f_{t}=f_{c}=1
$$

$$
\text { considering moderate vibrations, } f_{w}=1.2
$$

$$
\mathrm{C}_{0 \mathrm{a}}=3480 \mathrm{~N}
$$

$$
\text { nominal life, L = } 155729 \text { km }
$$

$$
L_{h}=43.25 \times 10^{4} \text { hours }
$$

for 8 hours per day, the service life of the ball screw in years is 148 years.

- Validation of assembly

- Service life of the system:

Component name	 nut $\left(L_{B}\right)$	Fixed side support $\left(L_{F}\right)$	Supported side support $\left(L_{S}\right)$	LM guide
$\left(L_{L}\right)$				
Service life (million revolution)	29841.1	86310.23	80977.79	77850
Service life (hours)	16.57×10^{4}	47.95×10^{4}	44.98×10^{4}	43.25×10^{4}
Service life (years)	57	164	154	148

$$
\frac{1}{L}=\frac{1}{L_{B}}+\frac{1}{L_{F}}+\frac{1}{L_{S}}+\frac{1}{L_{L}}
$$

$$
L=27.1 \text { years. }
$$

- Validation of assembly

- Rigidity of the system:

$$
\delta=\frac{F_{a}}{K}
$$

$\delta=$ Elastic displacement of a feed screw system in the axial direction ($\mu \mathrm{m}$)
$K=$ Axial rigidity of ball screw
$F_{a}=$ Applied axial load

$$
\frac{1}{k}=\frac{1}{k_{s}}+\frac{1}{k_{n}}+\frac{1}{k_{b}}
$$

$k=$ Axial rigidity of the system
$k_{s}=$ Axial rigidity of screw shaft
$k_{n}=$ Axial rigidity of the nut
$k_{b}=$ Axial rigidity of the bearings

$$
\begin{aligned}
& k=32.88 \mathrm{~N} / \mu \mathrm{m} \\
& \delta=1.84 \mu \mathrm{~m}
\end{aligned}
$$

- Validation of assembly

- Deflection of the system: (deflection is in the range of 10^{-9} to $10^{-8} \mathrm{~m}$)

- CAD model
\square Stacked stages CAD model

THANK YOU

