Mechanics Review

Concept of stress and strain, True and engineering

Stresses in 2D/3D, Mohr's circle (stress and strain) for
2D/3D

Elements of Plasticity

Material Models

Yielding criteria, Tresca and Von Mises
Invariants of stress and strain
Levy-Mises equations
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Outline

Stress and strain
— Engineering stresses/strain
— True stresses/strain

Stress tensors and strain tensors
— Stresses/strains in 3D
— Plane stress and plane strain

Principal stresses
Mohr’s circle in 2D/3D
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#1 - Match

a) Force equilibrium 1) 6:=0,+0,
b) Compatibility of 2) 2F=0; XM=0
deformation

c) Constitutive
equation

3) o=Ee
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Steps of a Mechanics Problem

O Read and understand problem
1 Free body diagram

2 Equilibrium of forces

— e.g. 2F=0, XM=0.

3 Compatibility of deformations
— e9.0,=08,+5,

4 Constitutive equations
—eg.c=Ee

5 Solve

A

—_— <—F
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Key Concepts

Load (Force), P, acting over area, A,

gives rise to stress, o.

P—» <—P

Engineering stress: ¢ = P/A,

(A, = original area)

True stress: o, = P/A

(A = actual area)
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Deformation

Quantified by strain, e or ¢

Engineering strain: e = (l-|)/l

True Strain: € = In(l/1)

Shear strain: y = a/b .
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True and Engineering strains

e = (I-L)/l.
e=(4)-1

(/) =e+1
In(l/l) = In(e + 1)
e=In(e +1)
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3-D Stress State In Cartesian Plane

Courtesy: htt

p:/lwww.jwave.vt.edu/crcd/kriz/lectures/Anisotropy.html
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X Uij where (1and j=123)

There are two subscripts in any stress component:

Direction of normal vector of the plane (first subscript)

Wy

Direction of action (second subscript%)
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Stress Tensor

O-xx Txy sz 611 012 613

Z'yx ny z-yz Oy Oy Oy
i sz sz GZZ . _031 032 033 _
Mechanics Notation Expanded Tensorial Notation

It can also be written as g;; in condensed form and is a second
order tensor, where i and j are indices
The number of components to specify a tensor

« 3", where n is the order of matrix
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Symmetry in Shear Stress

» |deally, there has to be nine components
« For small faces with no change in stresses

ZX XZ

+ Moment about z-axis, P
(7, AYAZ)AX = (7, AXAZ) Ay ' i =2 4
| ;
Similarly, e B
. e
Ty, =Ty Ve f\. i
T,=T '— i |

« Tensor becomes symmetric and have only six components, 3
normal and 3 shear stresses
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Plane Stress

0z, =0
Tyz = Tyz = 0

Only three components of stress

Oyy

\ |
/ \

Txy Tyx

http://www.shodor.org/~jingersoll/weave4/tutorial/Figures/sc.jpg
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Plane Strain (1)

One pair of faces has NO strain

— each cross-section has the same
strain

- €17
2 =17,, =0

Material in a groove
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2-D Stresses at an Angle
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Y fo=0,dA—(0,dA cosb) cosO+(T,, dA cosf) sinfl—(o, dA sinf) sinO+(r,, dA sinf) cosf =0

« 2 2 . -
Tp = 0y sin” 0 + o, cos” ) — 2 7, sinf cos
1 1 ‘ . -
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Shear Stress on Inclined Plane

Y fi = Tt dA—(0, dA cosf) sin 0—(7,, dA cosf) cosO+(a, dA sinf) cosf+(7,, dA sinf) sinf =0

Tat = —(0, — 0y) sinflcos + 1,y (cos® @ — sin” )
Tnt = ! ( ) sin 26 20
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Transformation Equations

E'I.

a 1
O = 5 (0z + oy)
! 1
Ty = b} (02 + 0y)
a 1 . ;
ey — T8 {ffm — ffy) sin 26 4 Try COS 20
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Principal Stresses

For principal stresses t,,=0

1
9 (o, — o) sin20 + 7., cos20 =0
TX
tan 29p — y
o,—0,
7
sin20, =+ Ty
2
o, —0,
[0
7
2
COoS 26’IO =4
2
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Principal Stresses

* Substituting values of sin20, and cos26,, in
transformation equation we get principal stresses

2
o, +t0 o, —0
_ y X y 2
Oy, = + + Ty
2 2

Angle of maximum shear stress, 6,
dr,, d(o,-o
d9 dg| 2

~sin29+1,, €OS 29) =0

tan 26, = - 2
Tyy

The maximum principal stress plane,

TX
tan 26, = Y
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Maximum Shear Stresses

tan 26, = —cot 260,

20, =20, +90

0, =0,1£45

substituting value of &, in 7,

2
O, — 0O
_ y 2
z-max_\/[ 2 j +Txy
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Equations of Mohr’s Circle

/ 1
O =5 (0x +0y) 5 (0, — 0,) cos20+ 7., sin20
f 1 1
o= 3 (0 +0y) — 5 (0, — 0,) cos20 — 7, sin20
/ 1
Ty = ~5 (6, — oy) sin26 + 7., cos20
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Mohr’s Circle
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From the
Pythagorean
theorem, the radius
of Mohr's circle is:

INEORE




Sec. 6.4 Plane Stress Reconsidered as a Three-Dimensional Case 227

Figure 6.14  Failure of a
pressure from fregzing.
occurred on a plane inclined 45 10 the tube surd
maximum shear stress. (Photos by R. A. Simonds.)

I5 mm dimeter copper water pipe due to excess
In the cross section on the nght, note that failure

ace, which is the plane of the
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ec. 4.6 Compression Test 137

Figure 4.23 Compression specimens of metals (left 1o right): untested spec-
imen. and tested specimens of gray cast iron. aluminum alloy 7075-T651. and
hot-rolled AISI 1020 steel. Diameters before testing were approximately 2%
mm, and lengths were 76 mm. (Photo by R. A. Simonds.)

diameter compression speaimens

Figure 424 Untested and tested 150 mm
(Phote by R. A, Simonds.)

of concrete with Hokie limestone aggregate.
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Sec, 4.10 Summary 155

?,ﬂ” _
—

Figure 440  Typical torsion fatlures showt

ng brittle behavior (above) in i)
cast iron, and ductile behavior (helow) i aluminum alloy 2024-T351. (Photo

by R. A. Simonds.)
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