Mechanics Review-III

- Elasticity
- Material Models
- Yielding criteria, Tresca and Von Mises
- Levy-Mises equations
- Case Study for multiple failure mechanism

Elastic Stress-Strain

• Linear stress-strain

 $\sigma_r = E \varepsilon_r$

• The extension in one direction is accompanied by contraction in other two directions, for isotropic material

$$
\varepsilon_{y} = \varepsilon_{z} = -v\varepsilon_{x}
$$

Hooke's Law

• In x direction, strain produced by stresses

Strains in x direction due to various stresses

Superimposing,

 $\frac{x}{x} - \frac{v}{E} \left(\sigma_y + \sigma_z \right)$ *x E E* $\boldsymbol{x} = \boldsymbol{V} \boldsymbol{O} \boldsymbol{y} = \boldsymbol{V} \boldsymbol{O} \boldsymbol{z}$ $\frac{x}{E}$ $\frac{E}{E}$ $\frac{E}{E}$ $\frac{E}{E}$ σ + σ σ ν $\varepsilon_{r} = \frac{\sigma_{x}}{\sigma} - \frac{\nu}{\sigma_{v}} \left(\sigma_{v} + \sigma_{v} \right)$ σ $\nu \sigma$ $\nu \sigma$ $\mathcal{E}_x = \frac{G_x}{T} - \frac{G_y}{T} -$

Hooke's Law

Stiffness Matrix

Compliance Matrix

Poisson's Ratio

• Adding the strains

$$
\varepsilon_x + \varepsilon_y + \varepsilon_z = \frac{1 - 2\nu}{E} \left(\sigma_y + \sigma_y + \sigma_z \right)
$$

 $e_x + e_y + e_z$, Engineering strains for elastic condition *V V* $= e_x + e_y +$ Δ

• For fully plastic,

$$
\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}=0
$$

 $v = 0.5$, Typically, $-1 \lt v \lt 0.5$, Most metals, 0.3

Stretching these two-dimensional hexagonal structures horizontally reveals the physical origin of Poisson's ratio. **a,** The cells of regular honeycomb or hexagonal crystals elongate and narrow when stretched, causing lateral contraction and so a positive Poisson's ratio. **b,** In artificial honeycomb with inverted cells, the structural elements unfold, causing lateral expansion and a negative Poisson's ratio.

Constitutive Behavior Equations

Linear elastic (simplest) – Young's modulus, $E = \sigma/e$

Thomas Young 1773-1829

Robert Hooke 1635-1703

#2 - Match

- a) Elastic plastic material
- b) Perfectly plastic material
- c) Elastic linear strain hardening material

Actual Material Behavior

 $\sigma_t = K \varepsilon^n$

 $K =$ strength coefficient n = strain hardening coefficient

Strain Rate Effect (1) $\sigma = C\dot{\varepsilon}^m$

C = strength coefficient m = strain rate sensitivity coefficient

Yield Criteria

- How do you know if a material will fail? Compare loading to various yield criteria
	- Tresca
	- von Mises
- Key concepts
	- plane stress
	- plane strain

Henri Tresca 1814-1885

Richard von Mises 1883-1953

#3 - Match

- a) Tresca yield criterion
- b) Von Mises yield criterion
- c) Maximum distortion energy criterion
- d) Maximum shear stress criterion

1)
$$
\tau_{\text{max}} \geq \frac{1}{2} \sigma_{\text{yield}}
$$

2)
$$
(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2
$$

+ $(\sigma_3 - \sigma_1)^2 = 2Y^2$

$$
3) \quad \sigma_3 - \sigma_1 = 2\tau_{yield}
$$

Stress-Strain Relationship

- Strength of a material or failure of the material is determined from uniaxial stress-strain tests $\frac{1}{2}$ a engar or a material or langre or the material is actermined from α
- The typical stress-strain curves for ductile and brittle materials are shown below. The typical stress-strain curves for ductile and brittle materials are
nown helow

Prof. Ramesh Singh Material Street, Street, Superington, Street, Superington, Superin

Need for a failure theory

• In the case of multiaxial stress at a point we have a more complicated situation present. Since it is impractical to test every material and every combination of stresses σ_1 , σ_2 , and σ_3 , a failure theory is needed for making predictions on the basis of a material's performance on the tensile test.

Importance of Yield Criterion

Assume three loading conditions in plane stress:

 $\sigma_1 - \sigma_3 = Y$

Tresca Yield Criterion

 $\tau_{\text{max}} \geq k$ or τ_{flow} (shear yield stress) a material property

$$
\sigma_{\text{max}} - \sigma_{\text{min}} = Y = 2k = 2\tau_{\text{flow}}
$$
 $\tau = \frac{\sigma_{\text{max}} - \sigma_{\text{min}}}{2} = k$

• Simple tension σ_1 = Y = 2k=2 τ_{flow}

• Under plane stress $\sigma_1 - \sigma_3 = Y$

Derivation of Distortion Energy

• Done in class

Von Mises Yield Criterion

Based on Distortion Energy

$$
(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 = 2Y^2
$$

$$
(\sigma_x-\sigma_y)^2+(\sigma_y-\sigma_z)^2+(\sigma_z-\sigma_x)^2+6(\tau_{xy}^2+\tau_{yz}^2+\tau_{xz}^2)=2Y^2
$$

 $Y =$ uni-axial yield stress

VonMises/Tresca Criterion

• The locus of yielding for VonMises

$$
\sigma_1^2 + \sigma_3^2 - \sigma_1 \sigma_3 = Y^2
$$

Using Tresca Criterion in first quadrant

$$
\sigma_1 > 0, \sigma_3 > 0
$$

$$
\sigma_{2}=0
$$

for plane stress maximum value of $\sigma_1, \sigma_3 = Y$ in first and third quadrant second and fourth it will be a 45 deg line,

 $\sigma_1 - \sigma_3 = Y$

Locus of Yield

Levy Mises Flow Eqn.

$$
\varepsilon_x = \frac{\sigma_x}{E} - \frac{V}{E} \left(\sigma_y + \sigma_z \right)
$$

Analogous to Elastic Equation

$$
d\varepsilon_1 = \frac{d\overline{\varepsilon}}{\overline{\sigma}} \left[\sigma_1 - \frac{1}{2} (\sigma_2 + \sigma_3) \right]
$$

$$
d\varepsilon_2 = \frac{d\overline{\varepsilon}}{\overline{\sigma}} \left[\sigma_2 - \frac{1}{2} (\sigma_1 + \sigma_3) \right]
$$

$$
d\varepsilon_3 = \frac{d\overline{\varepsilon}}{\overline{\sigma}} \left[\sigma_3 - \frac{1}{2} (\sigma_1 + \sigma_2) \right]
$$

For Brittle Materials

- Brittle Materials
	- Hardened steels exhibit symmetry tension and compression so preferred failure is maximum normal stresses or principal stresses
	- Some materials which exhibit tension compression asymmetry such cast iron need a different failure theory such Mohr Coulomb

Failure criteria a case study in composites

Failure stress for glass-fibers (Weibull Plot)

• Maximum principle stress criteria is used for modeling

26

Glass fiber

Displacement (mm) Displacement (mm)

0 0.05 0.1 0.15 0.2 0.25

0 0.1

Matrix failure and debonding

q Yielding takes place when the shear stress, *τ,* acting on a specific plane reaches a critical value, which is a function of the normal stress, σ_n acting on that plane.

Elastic definition for traction separation law

For cohesive layer, $K_{nn} = K_{ss} = K_{tt} = 35$ Gpa $t_{nn} = t_{ss} = t_{tt} = 30$ Mpa

max $\left\{\frac{\langle t_n \rangle}{t_n^0}, \frac{t_s}{t_c^0}, \frac{t_s}{t}\right\}$

Maximum nominal stress criterion

Mohr–Coulomb model for matrix failure

- *τ* = c σ tan φ
- C -cohesion (yield strength of matrix under pure shear loading) = 30 MPa
- φ -friction angle $(10^0 30^0) = 10^0$

27