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Mechanics Review-III

• Elasticity
• Material Models
• Yielding criteria, Tresca and Von Mises
• Levy-Mises equations
• Case Study for multiple failure mechanism
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Elastic Stress-Strain

• Linear stress-strain

• The extension in one direction is accompanied by 
contraction in other two directions, for isotropic 
material
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Hooke’s Law
• In x direction, strain produced by stresses
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Hooke’s Law
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Stiffness Matrix
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Compliance Matrix
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Poisson’s Ratio
• Adding the strains

• For fully plastic,
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Stretching these two-dimensional hexagonal structures horizontally reveals the
 physical origin of Poisson's ratio. a, The cells of regular honeycomb or hexagonal 
crystals elongate and narrow when stretched, causing lateral contraction and so a 
positive Poisson's ratio. b, In artificial honeycomb with inverted cells, 
the structural elements unfold, causing lateral expansion and a negative Poisson's ratio. 
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Constitutive Behavior Equations

Linear elastic (simplest) 
– Young’s modulus, E = s/e
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Thomas Young
1773-1829

Robert Hooke
1635-1703
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#2 - Match

a) Elastic – plastic 
material

b) Perfectly plastic 
material

c) Elastic – linear 
strain hardening 
material
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Actual Material Behavior
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Strain Rate Effect (1)

C = strength coefficient
m = strain rate sensitivity coefficient
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Yield Criteria

• How do you know if a material will fail?
 Compare loading to various yield 

criteria
– Tresca
– von Mises

• Key concepts 
– plane stress
– plane strain

Richard von Mises
1883-1953

Henri Tresca
1814-1885
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#3 - Match
a) Tresca yield 

criterion
b) Von Mises yield 

criterion
c) Maximum 

distortion energy 
criterion

d) Maximum shear 
stress criterion

1) tmax > ½ syield 

2) (s1-s2)2 + (s2-s3)2 
+ (s3-s1)2 = 2Y2

3)  s3-s1 = 2tyield



Stress-Strain Relationship
• Strength of a material or failure of the material is determined from 

uniaxial stress-strain tests

• The typical stress-strain curves for ductile and brittle materials are 
shown below. 
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Theories of Failure
Strength of a material or failure of the material is deduced
generally from uni-axial tests from which stress strain
characteristics of the material are obtained.

The typical stress-strain curves for ductile and brittle materials
are shown below.

Material Strength parameters are  ORyS uS

Theories of Failure
In the case of multidimensional stress at a point we have a more
complicated situation present. Since it is impractical to test every
material and every combination of stresses !1, !2, and !3, a
failure theory is needed for making predictions on the basis of a
material’s performance on the tensile test., of how strong it will
be under any other conditions of static loading.

The “theory” behind the various failure theories is that whatever
is responsible for failure in the standard tensile test will also be
responsible for failure under all other conditions of static
loading.



Need for a failure theory 
• In the case of multiaxial stress at a point we have a more 

complicated situation present. Since it is impractical to 
test every material and every combination of stresses s1, 
s2, ands3, a failure theory is needed for making 
predictions on the basis of a material’s performance on 
the tensile test.
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Importance of Yield Criterion
Assume three loading conditions in plane stress:
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s = Y
s + p = Y

At the onset of yielding,

s - p = Y
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Tresca Yield Criterion
tmax > k or tflow (shear yield stress) a material property

• Simple tension
 s1 = Y = 2k=2tflow

• Under plane stress
 s1 – s3 = Y

smax - smin = Y = 2k=2tflow k
2
σστ minmax =

-
=



Derivation of Distortion Energy

• Done in class
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Von Mises Yield Criterion
Based on Distortion Energy

(s1-s2)2 + (s2-s3)2 + (s3-s1)2 = 2Y2

Y = uni-axial yield stress
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VonMises/Tresca Criterion

• The locus of yielding for VonMises
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Locus of Yield
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Levy Mises Flow Eqn.
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For Brittle Materials

• Brittle Materials 
– Hardened steels exhibit symmetry tension 

and compression so preferred failure is 
maximum normal stresses or principal 
stresses

– Some materials which exhibit tension 
compression asymmetry such cast iron need 
a different failure theory such Mohr Coulomb
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Failure criteria a case study in composites
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Matrix failure
(Mohr-coulomb
failure criteria)

Interface failure
(Traction separation law)

Fiber failure
(Maximum principle
stress failure criteria)

Delamination between plies
(Traction separation law)



Failure stress for glass-fibers (Weibull Plot)
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Test data

• Mean value of the tensile strength is 1623.3 MPa
• Maximum principle stress criteria is used for modeling fiber failure
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Matrix failure and debonding 
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Mohr–Coulomb model for matrix failure
• τ = c – σ tan φ
C -cohesion (yield strength of matrix under pure shear loading) = 30 MPa
φ -friction angle (100-300) = 100

Friction angle ‘θ’

Cohesion ‘C’

σ

τ

Failed
Stable

q Yielding takes place when the shear stress, τ, 
acting on a specific plane reaches a critical value, 
which is a function of the normal stress, σn ,acting 
on that plane.

Maximum nominal stress criterion

For cohesive layer,  
Knn= Kss = Ktt = 35 Gpa
tnn = tss = ttt = 30 Mpa                   
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