Mechanics Review-III

- Elasticity
- Material Models
- Yielding criteria, Tresca and Von Mises
- Levy-Mises equations
- Case Study for multiple failure mechanism

Elastic Stress-Strain

• Linear stress-strain

 $\sigma_x = E\varepsilon_x$

 The extension in one direction is accompanied by contraction in other two directions, for isotropic material

$$\mathcal{E}_{v} = \mathcal{E}_{z} = -\mathcal{V}\mathcal{E}_{x}$$

Hooke's Law

• In x direction, strain produced by stresses Strains in x direction due to various stresses

Superimposing,

 $\varepsilon_{x} = \frac{\sigma_{x}}{E} - \frac{\nu \sigma_{y}}{E} - \frac{\nu \sigma_{z}}{E}$ $\varepsilon_{x} = \frac{\sigma_{x}}{E} - \frac{\nu}{E} \left(\sigma_{y} + \sigma_{z}\right)$

Hooke's Law

Stiffness Matrix

Compliance Matrix

Poisson's Ratio

• Adding the strains

$$\varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} = \frac{1 - 2\nu}{E} \left(\sigma_{y} + \sigma_{y} + \sigma_{z} \right)$$

 $\frac{\Delta V}{V} = e_x + e_y + e_z$, Engineering strains for elastic condition

• For fully plastic,

$$\varepsilon_x + \varepsilon_y + \varepsilon_z = 0$$

v = 0.5, Typically, -1<v<0.5, Most metals, 0.3

Stretching these two-dimensional hexagonal structures horizontally reveals the physical origin of Poisson's ratio. **a**, The cells of regular honeycomb or hexagonal crystals elongate and narrow when stretched, causing lateral contraction and so a positive Poisson's ratio. **b**, In artificial honeycomb with inverted cells, the structural elements unfold, causing lateral expansion and a negative Poisson's ratio.

Constitutive Behavior Equations

Linear elastic (simplest) – Young's modulus, $E = \sigma/e$

Thomas Young 1773-1829

Robert Hooke 1635-1703

#2 - Match

- a) Elastic plastic material
- b) Perfectly plastic material
- c) Elastic linear
 strain hardening
 material

Actual Material Behavior

K = strength coefficient n = strain hardening coefficient

Strain Rate Effect (1) $\sigma = C\dot{\varepsilon}^m$

C = strength coefficient m = strain rate sensitivity coefficient

Yield Criteria

- How do you know if a material will fail?
 Compare loading to various yield criteria
 - Tresca
 - von Mises
- Key concepts
 - plane stress
 - plane strain

Henri Tresca 1814-1885

Richard von Mises 1883-1953

#3 - Match

- a) Tresca yield criterion
- b) Von Mises yield criterion
- c) Maximum distortion energy criterion
- d) Maximum shear stress criterion

1)
$$\tau_{\text{max}} \geq \frac{1}{2} \sigma_{\text{yield}}$$

2)
$$(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 = 2Y^2$$

3)
$$\sigma_3 - \sigma_1 = 2\tau_{\text{yield}}$$

Stress-Strain Relationship

- Strength of a material or failure of the material is determined from uniaxial stress-strain tests
- The typical stress-strain curves for ductile and brittle materials are shown below.

Need for a failure theory

• In the case of multiaxial stress at a point we have a more complicated situation present. Since it is impractical to test every material and every combination of stresses σ_1 , σ_2 , and σ_3 , a failure theory is needed for making predictions on the basis of a material's performance on the tensile test.

Importance of Yield Criterion

Assume three loading conditions in plane stress:

 $\sigma_1 - \sigma_3 = Y$

Tresca Yield Criterion

 $\tau_{max} \ge k \text{ or } \tau_{flow}$ (shear yield stress) a material property

$$\sigma_{\text{max}} - \sigma_{\text{min}} = Y = 2k = 2\tau_{\text{flow}}$$
 $\tau = \frac{\sigma_{\text{max}} - \sigma_{\text{min}}}{2} = k$

• Simple tension $\sigma_1 = Y = 2k = 2\tau_{flow}$

• Under plane stress $\sigma_1 - \sigma_3 = Y$

Derivation of Distortion Energy

• Done in class

Von Mises Yield Criterion

Based on Distortion Energy

$$(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 = 2\mathbf{Y}^2$$

$$(\sigma_{x} - \sigma_{y})^{2} + (\sigma_{y} - \sigma_{z})^{2} + (\sigma_{z} - \sigma_{x})^{2} + 6(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{xz}^{2}) = 2Y^{2}$$

Y = uni-axial yield stress

VonMises/Tresca Criterion

The locus of yielding for VonMises

$$\sigma_1^2 + \sigma_3^2 - \sigma_1 \sigma_3 = Y^2$$

Using Tresca Criterion in first quadrant

$$\sigma_1>0,\sigma_3>0$$

$$\sigma_2 = 0$$

for plane stress maximum value of σ_1 , $\sigma_3 = Y$ in first and third quadrant second and fourth it will be a 45 deg line,

 $\sigma_1 - \sigma_3 = Y$

Locus of Yield

Levy Mises Flow Eqn.

$$\varepsilon_x = \frac{\sigma_x}{E} - \frac{\nu}{E} \left(\sigma_y + \sigma_z \right)$$

Analogous to Elastic Equation

$$d\varepsilon_{1} = \frac{d\overline{\varepsilon}}{\overline{\sigma}} \left[\sigma_{1} - \frac{1}{2} (\sigma_{2} + \sigma_{3}) \right]$$
$$d\varepsilon_{2} = \frac{d\overline{\varepsilon}}{\overline{\sigma}} \left[\sigma_{2} - \frac{1}{2} (\sigma_{1} + \sigma_{3}) \right]$$
$$d\varepsilon_{3} = \frac{d\overline{\varepsilon}}{\overline{\sigma}} \left[\sigma_{3} - \frac{1}{2} (\sigma_{1} + \sigma_{2}) \right]$$

For Brittle Materials

- Brittle Materials
 - Hardened steels exhibit symmetry tension and compression so preferred failure is maximum normal stresses or principal stresses
 - Some materials which exhibit tension compression asymmetry such cast iron need a different failure theory such Mohr Coulomb

Failure criteria a case study in composites

Failure stress for glass-fibers (Weibull Plot)

Matrix failure and debonding

□ Yielding takes place when the shear stress, τ , acting on a specific plane reaches a critical value, which is a function of the normal stress, σ_n , acting on that plane.

Elastic definition for traction separation law

For cohesive layer, $K_{nn} = K_{ss} = K_{tt} = 35$ Gpa $t_{nn} = t_{ss} = t_{tt} = 30$ Mpa

 $\max \left\{ \frac{\langle t_n \rangle}{t_n^0}, \frac{t_s}{t_s^0}, \frac{t}{t} \right\}$

Maximum nominal stress criterion

Mohr–Coulomb model for matrix failure

- $\tau = c \sigma \tan \phi$
- C -cohesion (yield strength of matrix under pure shear loading) = 30 MPa
- φ -friction angle (10⁰-30⁰) = 10⁰