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Design of Shafts
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Introduction

• Torque and Power Transmission
• Most of rotary prime movers either 

motors or turbines use shaft to transfer 
the power

• Bearings are required for support
• Shaft failure analysis is critical
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Shaft Design
• Material Selection (usually steel, unless you have good reasons)
• Geometric Layout (fit power transmission equipment, gears, 

pulleys)
• Failure strength

– Static strength
– Fatigue strength

• Shaft deflection
– Bending deflection
– Torsional deflection
– Slope at bearings and shaft-supported elements
– Shear deflection due to transverse loading of short shafts

• Critical speeds at natural frequencies
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Shaft Materials 
• Deflection primarily controlled by geometry, not material
• Strain controlled by geometry but material has a role in stress
• Strength, Yield or UTS is a material property. Cold drawn steel 

typical for d< 3 in.
• HR steel common for larger sizes.  Should be machined all 

over.
• Low production quantities: Machining 
• High production quantities: Forming
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Shaft Layout
• Shafts need to accommodate 

bearings, gears and pulleys 
which should be specified

• Shaft Layout
– Axial layout of components
– Supporting axial loads 

(bearings)
– Providing for torque 

transmission 
(gearing/sprockets)

– Assembly and 
Disassembly(repair & 
adjustment) 
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Axial Layout of Components

6
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The geometric configuration of a shaft to be designed is often simply a revision of
existing models in which a limited number of changes must be made. If there is no
existing design to use as a starter, then the determination of the shaft layout may have
many solutions. This problem is illustrated by the two examples of Fig. 7–2. In
Fig. 7–2a a geared countershaft is to be supported by two bearings. In Fig. 7–2c a
fanshaft is to be configured. The solutions shown in Fig. 7–2b and 7–2d are not neces-
sarily the best ones, but they do illustrate how the shaft-mounted devices are fixed and
located in the axial direction, and how provision is made for torque transfer from one
element to another. There are no absolute rules for specifying the general layout, but the
following guidelines may be helpful.

Figure 7–1
A vertical worm-gear speed
reducer. (Courtesy of the
Cleveland Gear Company.)

Figure 7–2
(a) Choose a shaft
configuration to support and
locate the two gears and two
bearings. (b ) Solution uses an
integral pinion, three shaft
shoulders, key and keyway, and
sleeve. The housing locates the
bearings on their outer rings
and receives the thrust loads.
(c) Choose fan-shaft
configuration. (d) Solution uses
sleeve bearings, a straight-
through shaft, locating collars,
and setscrews for collars, fan
pulley, and fan itself. The fan
housing supports the sleeve
bearings.

(a) (b)

(c)

Fan

(d)
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Supporting Axial Load
• Axial loads must be supported through a bearing to the frame
• Generally best for only one bearing to carry axial load to 

shoulder
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• Pins

• Press or shrink fits

• Tapered fits

In addition to transmitting the torque, many of these devices are designed to fail if
the torque exceeds acceptable operating limits, protecting more expensive components.

Details regarding hardware components such as keys, pins, and setscrews are
addressed in detail in Sec. 7–7. One of the most effective and economical means of
transmitting moderate to high levels of torque is through a key that fits in a groove in
the shaft and gear. Keyed components generally have a slip fit onto the shaft, so assem-
bly and disassembly is easy. The key provides for positive angular orientation of the
component, which is useful in cases where phase angle timing is important.

Figure 7–3
Tapered roller bearings used
in a mowing machine spindle.
This design represents good
practice for the situation in
which one or more torque-
transfer elements must
be mounted outboard. 
(Source: Redrawn from
material furnished by The
Timken Company.)

Figure 7–4
A bevel-gear drive in 
which both pinion and gear
are straddle-mounted.
(Source: Redrawn from
material furnished by 
Gleason Machine Division.)
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Torque Transmission
• Common means of transferring torque to shaft

– Keys
– Splines
– Setscrews
– Pins
– Press or shrink fits
– Tapered fits

• Keys are one of the most effective◦
– Slip fit of component onto shaft for easy assembly
– Positive angular orientation of component
– Can design the key to be weakest link to fail in case of overload
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Shaft Design for Stresses

• Stresses are only evaluated at critical location
• Critical locations are usually

– On the outer surface
– Where the bending moment is large
– Where the torque is present
– Where stress concentrations exist
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Shaft Stresses
• Standard stress equations can be customized for shafts 
• Axial loads are generally small so only bending and torsion will 

be considered
• Standard alternating and midrange stresses can be calculated

10
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Most shafts will transmit torque through a portion of the shaft. Typically the torque
comes into the shaft at one gear and leaves the shaft at another gear. A free body dia-
gram of the shaft will allow the torque at any section to be determined. The torque is
often relatively constant at steady state operation. The shear stress due to the torsion
will be greatest on outer surfaces.

The bending moments on a shaft can be determined by shear and bending moment
diagrams. Since most shaft problems incorporate gears or pulleys that introduce forces
in two planes, the shear and bending moment diagrams will generally be needed in two
planes. Resultant moments are obtained by summing moments as vectors at points of
interest along the shaft. The phase angle of the moments is not important since the
shaft rotates. A steady bending moment will produce a completely reversed moment
on a rotating shaft, as a specific stress element will alternate from compression to
tension in every revolution of the shaft. The normal stress due to bending moments
will be greatest on the outer surfaces. In situations where a bearing is located at the
end of the shaft, stresses near the bearing are often not critical since the bending
moment is small.

Axial stresses on shafts due to the axial components transmitted through helical
gears or tapered roller bearings will almost always be negligibly small compared to
the bending moment stress. They are often also constant, so they contribute little to
fatigue. Consequently, it is usually acceptable to neglect the axial stresses induced by
the gears and bearings when bending is present in a shaft. If an axial load is applied
to the shaft in some other way, it is not safe to assume it is negligible without check-
ing magnitudes.

Shaft Stresses
Bending, torsion, and axial stresses may be present in both midrange and alternating
components. For analysis, it is simple enough to combine the different types of stresses
into alternating and midrange von Mises stresses, as shown in Sec. 6–14, p. 317.
It is sometimes convenient to customize the equations specifically for shaft applica-
tions. Axial loads are usually comparatively very small at critical locations where
bending and torsion dominate, so they will be left out of the following equations. The
fluctuating stresses due to bending and torsion are given by

σa = K f
Mac

I
σm = K f

Mmc
I

(7–1)

τa = K f s
Tac
J

τm = K f s
Tmc

J
(7–2)

where Mm and Ma are the midrange and alternating bending moments, Tm and Ta are
the midrange and alternating torques, and K f and K f s are the fatigue stress-concentration
factors for bending and torsion, respectively.

Assuming a solid shaft with round cross section, appropriate geometry terms can
be introduced for c, I, and J resulting in

σa = K f
32Ma

πd 3
σm = K f

32Mm

πd 3 (7–3)

τa = K f s
16Ta

πd 3
τm = K f s

16Tm

πd 3 (7–4)
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Design Stresses
• Calculating vonMises Stresses

11
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Combining these stresses in accordance with the distortion energy failure theory,
the von Mises stresses for rotating round, solid shafts, neglecting axial loads, are
given by

σ ′
a = (σ 2

a + 3τ 2
a )1/2 =

[(
32K f Ma

πd3

)2

+ 3
(

16K f s Ta

πd3

)2
]1/2

(7–5)

σ ′
m = (σ 2

m + 3τ 2
m)1/2 =

[(
32K f Mm

πd3

)2

+ 3
(

16K f s Tm

πd3

)2
]1/2

(7–6)

Note that the stress-concentration factors are sometimes considered optional for the
midrange components with ductile materials, because of the capacity of the ductile
material to yield locally at the discontinuity.

These equivalent alternating and midrange stresses can be evaluated using an
appropriate failure curve on the modified Goodman diagram (See Sec. 6–12, p. 303, and
Fig. 6–27). For example, the fatigue failure criteria for the modified Goodman line as
expressed previously in Eq. (6–46) is

1
n

= σ ′
a

Se
+ σ ′

m

Sut

Substitution of σ ′
a and σ ′

m from Eqs. (7–5) and (7–6) results in

1
n

= 16
πd3

{
1
Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2 + 1

Sut

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

}

For design purposes, it is also desirable to solve the equation for the diameter. This
results in

d =
(

16n
π

{
1
Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2

+ 1
Sut

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

})1/3

Similar expressions can be obtained for any of the common failure criteria by sub-
stituting the von Mises stresses from Eqs. (7–5) and (7–6) into any of the failure
criteria expressed by Eqs. (6–45) through (6–48), p. 306. The resulting equations for
several of the commonly used failure curves are summarized below. The names
given to each set of equations identifies the significant failure theory, followed by a
fatigue failure locus name. For example, DE-Gerber indicates the stresses are com-
bined using the distortion energy (DE) theory, and the Gerber criteria is used for the
fatigue failure.

DE-Goodman

1
n

= 16
πd3

{
1
Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2 + 1

Sut

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

}

(7–7)

d =
(

16n
π

{
1
Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2

+ 1
Sut

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

})1/3 (7–8)
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Modified Goodman
• Substituting vonMises into failure criterion

• Solving for diameter 

12

Shaft Stresses 

y Substitute von Mises stresses into failure criteria equation.  For 
example, using modified Goodman line, 
 
 
 
 
 

y Solving for d is convenient for design purposes 

Shigley’s Mechanical Engineering Design 

Shaft Stresses 

y Substitute von Mises stresses into failure criteria equation.  For 
example, using modified Goodman line, 
 
 
 
 
 

y Solving for d is convenient for design purposes 

Shigley’s Mechanical Engineering Design 
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Design of shafts
• Similar approach can be taken with any of the fatigue failure 

criteria
• Equations are referred to by referencing both the Distortion 

Energy method of combining stresses and the fatigue failure 
locus name. For example, DE-Goodman, DE-Gerber, etc.

• In analysis situation, can either use these customized 
equations for factor of safety, or can use standard approach 
from Ch. 6.

• In design situation, customized equations for d are much 
more convenient.
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Gerber

14

Shaft Stresses 

y DE-Gerber 

Shigley’s Mechanical Engineering Design 

where 
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Other Criteria
• ASME Elliptic

• DE Soderberg

15

Shaft Stresses 

y DE-ASME Elliptic 
 
 
 
 
 
 

y DE-Soderberg 

Shigley’s Mechanical Engineering Design 
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DE-Gerber

1
n

= 8A
πd3Se

⎧
⎨

⎩1 +
[

1 +
(

2BSe

ASut

)2
]1/2

⎫
⎬

⎭ (7–9)

d =

⎛

⎝8n A
π Se

⎧
⎨

⎩1 +
[

1 +
(

2BSe

ASut

)2
]1/2

⎫
⎬

⎭

⎞

⎠
1/3

(7–10)

where

A =
√

4(K f Ma)2 + 3(K f s Ta)2

B =
√

4(K f Mm)2 + 3(K f s Tm)2

DE-ASME Elliptic

1
n

= 16
πd3

[
4
(

K f Ma

Se

)2

+ 3
(

K f s Ta

Se

)2

+ 4
(

K f Mm

Sy

)2

+ 3
(

K f s Tm

Sy

)2
]1/2

(7–11)

d =

⎧
⎨

⎩
16n
π

[
4
(

K f Ma

Se

)2

+ 3
(

K f s Ta

Se

)2

+ 4
(

K f Mm

Sy

)2

+ 3
(

K f s Tm

Sy

)2
]1/2

⎫
⎬

⎭

1/3

(7–12)

DE-Soderberg

1
n

= 16
πd3

{
1
Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2 + 1

Syt

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

}

(7–13)

d =
(

16n
π

{
1
Se

[
4(K f Ma)

2 + 3(K f s Ta)
2]1/2

+ 1
Syt

[
4(K f Mm)2 + 3(K f s Tm)2]1/2

})1/3 (7–14)

For a rotating shaft with constant bending and torsion, the bending stress is com-
pletely reversed and the torsion is steady. Equations (7–7) through (7–14) can be sim-
plified by setting Mm and Ta equal to 0, which simply drops out some of the terms.

Note that in an analysis situation in which the diameter is known and the factor of
safety is desired, as an alternative to using the specialized equations above, it is always
still valid to calculate the alternating and mid-range stresses using Eqs. (7–5) and (7–6),
and substitute them into one of the equations for the failure criteria, Eqs. (6–45) through
(6–48), and solve directly for n. In a design situation, however, having the equations
pre-solved for diameter is quite helpful.

It is always necessary to consider the possibility of static failure in the first load cycle.
The Soderberg criteria inherently guards against yielding, as can be seen by noting that
its failure curve is conservatively within the yield (Langer) line on Fig. 6–27, p. 305. The
ASME Elliptic also takes yielding into account, but is not entirely conservative
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Rotating Shaft
• For rotating shaft with steady, alternating bending 

and torsion
– Bending stress is completely reversed (alternating), since a 

stress element on the surface cycles from equal tension to 
compression during each rotation

– Torsional stress is steady (constant or static)
– Previous equations simplify with Mm and Ta equal to 0
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Yielding Check
• Always necessary to consider static failure, even in fatigue 

situation
• Soderberg criteria inherently guards against yielding
• ASME-Elliptic criteria takes yielding into account, but is not 

entirely conservative
• Gerber and modified Goodman criteria require specific check 

for yielding

17

Checking for Yielding in Shafts 

y Always necessary to consider static failure, even in fatigue 
situation 

y Soderberg criteria inherently guards against yielding 
y ASME-Elliptic criteria takes yielding into account, but is not 

entirely conservative 
y Gerber and modified Goodman criteria require specific check for 

yielding 

Shigley’s Mechanical Engineering Design 
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Yield Check
• Use von Mises maximum stress to check for yielding, 

• Alternate simple check is to obtain conservative estimate of 
s'max by summing 

18

Checking for Yielding in Shafts 

y Use von Mises maximum stress to check for yielding, 
 
 
 
 
 
 

y Alternate simple check is to obtain conservative estimate of s'max 
by summing s'a and s'm  
 

Shigley’s Mechanical Engineering Design 

max a ms s sc c c| �
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Deflection Considerations
• Deflection analysis requires complete geometry & loading 

information for the entire shaft
• Allowable deflections at components will depend on the 

component manufacturer’s specifications.

19

Shafts and Shaft Components 379

7–5 Deflection Considerations
Deflection analysis at even a single point of interest requires complete geometry infor-
mation for the entire shaft. For this reason, it is desirable to design the dimensions at
critical locations to handle the stresses, and fill in reasonable estimates for all other
dimensions, before performing a deflection analysis. Deflection of the shaft, both lin-
ear and angular, should be checked at gears and bearings. Allowable deflections will
depend on many factors, and bearing and gear catalogs should be used for guidance
on allowable misalignment for specific bearings and gears. As a rough guideline, typ-
ical ranges for maximum slopes and transverse deflections of the shaft centerline are
given in Table 7–2. The allowable transverse deflections for spur gears are dependent
on the size of the teeth, as represented by the diametral pitch P ! number of
teeth/pitch diameter.

In Sec. 4–4 several beam deflection methods are described. For shafts, where the
deflections may be sought at a number of different points, integration using either
singularity functions or numerical integration is practical. In a stepped shaft, the cross-
sectional properties change along the shaft at each step, increasing the complexity of
integration, since both M and I vary. Fortunately, only the gross geometric dimensions
need to be included, as the local factors such as fillets, grooves, and keyways do not
have much impact on deflection. Example 4–7 demonstrates the use of singularity func-
tions for a stepped shaft. Many shafts will include forces in multiple planes, requiring
either a three-dimensional analysis, or the use of superposition to obtain deflections in
two planes which can then be summed as vectors.

A deflection analysis is straightforward, but it is lengthy and tedious to carry out
manually, particularly for multiple points of interest. Consequently, practically all shaft
deflection analysis will be evaluated with the assistance of software. Any general-
purpose finite-element software can readily handle a shaft problem (see Chap. 19).
This is practical if the designer is already familiar with using the software and with how
to properly model the shaft. Special-purpose software solutions for 3-D shaft analysis
are available, but somewhat expensive if only used occasionally. Software requiring
very little training is readily available for planar beam analysis, and can be downloaded
from the internet. Example 7–3 demonstrates how to incorporate such a program for a
shaft with forces in multiple planes.

Slopes

Tapered roller 0.0005–0.0012 rad

Cylindrical roller 0.0008–0.0012 rad

Deep-groove ball 0.001–0.003 rad

Spherical ball 0.026–0.052 rad

Self-align ball 0.026–0.052 rad

Uncrowned spur gear < 0.0005 rad

Transverse Deflections

Spur gears with P < 10 teeth/in 0.010 in

Spur gears with 11 < P < 19 0.005 in

Spur gears with 20 < P < 50 0.003 in

Table 7–2

Typical Maximum
Ranges for Slopes and
Transverse Deflections
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Determination of deflections
• Linear & angular deflections, should be checked at gears and 

bearings
• Deflection analysis is straightforward, but very lengthy and 

tedious to carry out manually. Consequently, shaft deflection 
analysis is almost always done with the assistance of 
software(usually FEA)

• For this reason, a common approach is to size critical locations 
for stress, then fill in reasonable size estimates for other 
locations, then check deflection using FEA or other software

• Software options include specialized shaft software, general 
beam deflection software, and finite element analysis (FEA) 
software.
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Critical Speeds
• For a rotating shaft if the centripetal force is equal to the 

elastic restoring force, the deflection increases greatly and the 
shaft is said to "whirl”

• Below and above this speed this effect is not pronounced 
• This critical (whirling speed) is dependent on:

– The shaft dimensions
– The shaft material and 
– The shaft loads
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Critical speeds of shafts
Force balance of restoring force and centripetal, 

!"#$ = &$
k	is	the	stiffness	of	the	transverse	vibration

" = 2 678 =
&
!

The critical speed for a point mass of m,

78 =
1
2 6

&
!

For a horizontal shaft, 

78 =
1
2 6

:
$

Where y = the static deflection at the location of the concentrated mass
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Ensemble of lumped masses
• For ensemble of lumped masses Raleigh’s method pf lumped 

masses gives,

• where wi is the weight of the ith location and yi is the 
deflection at the ith body location

23

If torsional stiffness is defined as ki = Ti/θi and, since θi = Ti/ki and
θ =

∑
θi =

∑
(Ti/ki ), for constant torque θ = T

∑
(1/ki ), it follows that the torsional

stiffness of the shaft k in terms of segment stiffnesses is

1
k

=
∑ 1

ki
(7–21)

7–6 Critical Speeds for Shafts
When a shaft is turning, eccentricity causes a centrifugal force deflection, which is
resisted by the shaft’s flexural rigidity E I . As long as deflections are small, no harm is
done. Another potential problem, however, is called critical speeds: at certain speeds
the shaft is unstable, with deflections increasing without upper bound. It is fortunate
that although the dynamic deflection shape is unknown, using a static deflection curve
gives an excellent estimate of the lowest critical speed. Such a curve meets the bound-
ary condition of the differential equation (zero moment and deflection at both bearings)
and the shaft energy is not particularly sensitive to the exact shape of the deflection
curve. Designers seek first critical speeds at least twice the operating speed.

The shaft, because of its own mass, has a critical speed. The ensemble of attach-
ments to a shaft likewise has a critical speed that is much lower than the shaft’s intrin-
sic critical speed. Estimating these critical speeds (and harmonics) is a task of the
designer. When geometry is simple, as in a shaft of uniform diameter, simply supported,
the task is easy. It can be expressed4 as

ω1 =
(

π

l

)2√ E I
m

=
(

π

l

)2
√

gE I
Aγ

(7–22)

where m is the mass per unit length, A the cross-sectional area, and γ the specific
weight. For an ensemble of attachments, Rayleigh’s method for lumped masses gives5

ω1 =
√

g
∑

wi yi∑
wi y2

i

(7–23)

where wi is the weight of the ith location and yi is the deflection at the ith body location.
It is possible to use Eq. (7–23) for the case of Eq. (7–22) by partitioning the shaft into
segments and placing its weight force at the segment centroid as seen in Fig. 7–12.
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(a)

x

y

(b)

x

y

Figure 7–12
(a) A uniform-diameter 
shaft for Eq. (7–22). (b) A
segmented uniform-diameter
shaft for Eq. (7–23).

4William T. Thomson and Marie Dillon Dahleh, Theory of Vibration with Applications, Prentice Hall,
5th ed., 1998, p. 273.
5Thomson, op. cit., p. 357.
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Beam Theory
• m = Mass (kg)
• Nc = critical speed (rev/s )
• g = acceleration due to gravity (m.s-2 ) 
• O = centroid location
• G = Centre of Gravity location
• L = Length of shaft
• E = Young's Modulus (N/m2)
• I = Second Moment of Area (m4)
• y = deflection from δ with shaft rotation = ω δ static 

deflection (m)
• ω = angular velocity of shaft (rads/s)

24
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Whirling Speed
• The centrifugal force on the shaft = m ω 2(y + e) and the 

inward pull exerted by the shaft, F = y48EI / L3 for simply 
supported. For a general beam F= y K EI / L3 

where K is  constant depending on the loading and the end 
support conditions

25
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Critical Speed
• The critical speed is given by

26

 

The centrifugal force on the shaft = m ω 
2
(y + e) and the inward pull exerted by the shaft = y

(48EI / L 
3
). 

Reference Beam theory - Deflection 

The more general formulea for the restoring traverse force of the beam is y (K EI / L 
3
) where K =

a constant depending on the position of the mass and the end fixing conditions.

Equating these forces...

 

When the denominator = 0 ,that is [ KEI / m ω 
2
 L 

3
 ] = 1 , the deflection becomes infinite and

whirling takes place.

The whirling or critical speed is therefore.

 

For a simply supported beam with a central mass K = 48 .. See examples below

Substituting ω 
c
 
2
 for KEI /mL

3
 in the above equation for y results in the following equation

which relates the angular velocity with the deflection.

 

This is plotted below..

 

This curve shows the deflection of the shaft (from the static deflection position) at any speed ω in
terms of the critical speed.

When ω < ωc the deflection y and e have the same sign that is G lies outside of O.  When ω > ωc
then y and e are of opposite signs and G lies between the centre of the rotating shaft and the static
deflection curve.  At high speed G will move such that it tends to coincide with the static
deflection curve.

Cantilever rotating mass

Mass of shaft neglected

 

Central rotating mass- Long Bearings

Mass of shaft neglected



ME 423: Machine Design
Instructor: Ramesh Singh

Critical speeds of some configurations

27

 

This curve shows the deflection of the shaft (from the static deflection position) at any speed ω in
terms of the critical speed.

When ω < ωc the deflection y and e have the same sign that is G lies outside of O.  When ω > ωc
then y and e are of opposite signs and G lies between the centre of the rotating shaft and the static
deflection curve.  At high speed G will move such that it tends to coincide with the static
deflection curve.

Cantilever rotating mass

Mass of shaft neglected

 

Central rotating mass- Long Bearings

Mass of shaft neglected

 

Central rotating mass - Short Bearings

Mass of shaft neglected

 

Non-Central rotating mass - Short Bearings

Mass of shaft neglected
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Central rotating mass - Short Bearings

Mass of shaft neglected

 

Non-Central rotating mass - Short Bearings

Mass of shaft neglected

 

Cantilevered Shaft

 

m = mass /unit length

Shaft Between short bearings

 

m = mass /unit length
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Cantilevered Shaft

 

m = mass /unit length

Shaft Between short bearings

 

m = mass /unit length

 

Cantilevered Shaft

 

m = mass /unit length

Shaft Between short bearings

 

m = mass /unit length
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Shaft Between long bearings

 

m = mass /unit length

Combined loading 

This is known as Dunkerley's method an is based on the theory of superposition.... 
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Dunkerley’s Method

31

Shaft Between long bearings

 

m = mass /unit length

Combined loading 

This is known as Dunkerley's method an is based on the theory of superposition.... 

 

 


