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Introduction

Torque and Power Transmission

Most of rotary prime movers either
motors or turbines use shaft to transfer
the power

Bearings are required for support
Shaft failure analysis is critical
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Shaft Design

Material Selection (usually steel, unless you have good reasons)
Geometric Layout (fit power transmission equipment, gears,
pulleys)

Failure strength

— Static strength

— Fatigue strength
Shaft deflection

— Bending deflection

— Torsional deflection

— Slope at bearings and shaft-supported elements

— Shear deflection due to transverse loading of short shafts

Critical speeds at natural frequencies
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Shaft Materials

Deflection primarily controlled by geometry, not material
Strain controlled by geometry but material has a role in stress

Strength, Yield or UTS is a material property. Cold drawn steel
typical for d< 3 in.

HR steel common for larger sizes. Should be machined all
over.

Low production quantities: Machining
High production quantities: Forming
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Shaft Layout

e Shafts need to accommodate
bearings, gears and pulleys
which should be specified

e Shaft Layout
— Axial layout of components

— Supporting axial loads
(bearings)

— Providing for torque
transmission
(gearing/sprockets)

— Assembly and
Disassembly(repair &
adjustment)
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Axial Layout of Components
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Supporting Axial Load

* Axial loads must be supported through a bearing to the frame

* Generally best for only one bearing to carry axial load to
shoulder
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Torque Transmission

« Common means of transferring torque to shaft
— Keys
— Splines
— Setscrews

— Pins
— Press or shrink fits
— Tapered fits

* Keys are one of the most effectivee
— Slip fit of component onto shaft for easy assembly
— Positive angular orientation of component
— Can design the key to be weakest link to fail in case of overload
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Shaft Design for Stresses

e Stresses are only evaluated at critical location

e Critical locations are usually
— On the outer surface
— Where the bending moment is large
— Where the torque is present
— Where stress concentrations exist
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Shaft Stresses

* Standard stress equations can be customized for shafts

* Axial loads are generally small so only bending and torsion will
be considered

e Standard alternating and midrange stresses can be calculated

M,c M, c
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Design Stresses

e C(Calculating vonMises Stresses
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Modified Goodman

e Substituting vonMises into failure criterion
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Design of shafts

Similar approach can be taken with any of the fatigue failure
criteria

Equations are referred to by referencing both the Distortion
Energy method of combining stresses and the fatigue failure
locus name. For example, DE-Goodman, DE-Gerber, etc.

In analysis situation, can either use these customized

equations for factor of safety, or can use standard approach
from Ch. 6.

In design situation, customized equations for d are much
more convenient.
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Gerber

o DE-Gerber
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Other Criteria

 ASME Elliptic
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Rotating Shaft

* For rotating shaft with steady, alternating bending
and torsion

— Bending stress is completely reversed (alternating), since a
stress element on the surface cycles from equal tension to
compression during each rotation

— Torsional stress is steady (constant or static)
— Previous equations simplify with Mm and Ta equal to O
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Yielding Check

* Always necessary to consider static failure, even in fatigue
situation

* Soderberg criteria inherently guards against yielding

 ASME-Elliptic criteria takes yielding into account, but is not
entirely conservative

* Gerber and modified Goodman criteria require specific check

for yielding sk
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Yield Check

e Use von Mises maximum stress to check for yielding,

/ 211/2

Omax = [( Om + Uu)z + 3(tm + Ta) ]

Td3

‘32Kf'(Mm+1wa)‘ ’ .l(ijs(Tm‘i‘Ta). ’
- | d>3 3 |

S,

/
GlTI ax

]]\. r—

* Alternate simple check is to obtain conservative estimate of

c'max by summing
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Deflection Considerations

* Deflection analysis requires complete geometry & loading
information for the entire shaft

* Allowable deflections at components will depend on the
component manufacturer’s specifications.

Table 7-2 O slopes
Typical Maximum Tapered roller 0.0005—0.0012 rad
Ranges for Slopes and Cylindrical roller 0.0008—0.0012 rad
Transverse Deflections Deep-groove ball 0.001—0.003 rad
Spherical ball 0.026—0.052 rad
Self-align ball 0.026—0.052 rad
Uncrowned spur gear < 0.0005 rad
Transverse Deflections
Spur gears with P < 10 teeth/in 0.010in
Spur gears with 11 < P < 19 0.005 in
Spur gears with 20 < P < 50 0.003 in
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Determination of deflections

Linear & angular deflections, should be checked at gears and
bearings

Deflection analysis is straightforward, but very lengthy and
tedious to carry out manually. Consequently, shaft deflection
analysis is almost always done with the assistance of
software(usually FEA)

For this reason, a common approach is to size critical locations
for stress, then fill in reasonable size estimates for other
locations, then check deflection using FEA or other software

Software options include specialized shaft software, general
beam deflection software, and finite element analysis (FEA)
software.
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Critical Speeds

* For a rotating shaft if the centripetal force is equal to the
elastic restoring force, the deflection increases greatly and the
shaft is said to "whirl”

 Below and above this speed this effect is not pronounced

* This critical (whirling speed) is dependent on:
— The shaft dimensions
— The shaft material and
— The shaft loads
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Critical speeds of shafts

Force balance of restoring force and centripetal,
mw?y = ky
k is the stiffness of the transverse vibration

B 1 |k
©  2m.m
For a horizontal shaft,
1
N= - |9
21 |y

Where y = the static deflection at the location of the concentrated mass
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Ensemble of lumped masses

* For ensemble of lumped masses Raleigh’s method pf lumped
masses gives,

* where w; is the weight of the it" location and vy, is the
deflection at the it body location
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Beam Theory

* m = Mass (kg)

* Nc = critical speed (rev/s)

e g=acceleration due to gravity (m.s-2)
* O =centroid location

G =Centre of Gravity location

* L= Length of shaft

* E =Young's Modulus (N/m2)

* | =Second Moment of Area (m4)

* vy =deflection from & with shaft rotation = w & static
deflection (m)

e w = angular velocity of shaft (rads/s)
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Whirling Speed

* The centrifugal force on the shaft = m w?(y + e) and the
inward pull exerted by the shaft, F = y48El / L3 for simply
supported. For a general beam F=y K El / L3

where K is constant depending on the loading and the end
support conditions
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Critical Speed

* The critical speed is given by
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Critical speeds of some configurations

N\

L/iZ

V3El / mL®

2

Cantilevered Shaft
with disc at end

N.=

L/Z

N

% N,= J192EI / mL®

( 2
) Central Disc

% with long bearings

ME 423: Machine Design
Instructor: Ramesh Singh

27



L/2

L/2

A

y 48El / mL3

Ne= 2

S Central Disc

%\ with short bearings

A

L

J/ 3EIL /ma® b*

N.=

S 2xn
. Non-central disc

%\ with short bearings

A

|-
| i

ME 423: Machine Design
Instructor: Ramesh Singh

28



Cantilevered Shaft
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Dunkerley’s Method

This is known as Dunkerley's method an is based on the theory of superposition....
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