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Overview
• Slab analysis

– frictionless
– with friction
– Rectangular
– Cylindrical

• Strain hardening and rate effects
• Flash
• Redundant work
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Forging – cylindrical part
sliding region
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Equilibrium in r direction
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Axisymmetric flow and yield

For axisymmetric flow 

By Tresca
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Stress in z direction

dphrdrpr ⋅−=⋅µ2

02 =⋅+⋅−⋅+⋅ dphrdrhdrhdrpr rr σσµ
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Forging pressure - sliding
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Average forging pressure –
sliding
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Average forging pressure –
sliding
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Forging force – sliding
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• Taking the first four terms of a Taylor’s 
series expansion for the exponential 
about 0 for

Average forging pressure –
all sliding approximation (rk = 0)
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Forging force –
all sliding approximation
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Transition sticking / sliding

• Set τflow = µp and solve for rk















 −

=
h
rRp k

flow
µ

τ
2exp

2 













 −

=
⋅ h

rR
p

p kµ
µ

2exp
2







 −

=







h
rR kµ

µ
2

2
1ln 








−=

µµ 2
1ln

2
hRrk



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

14

Forging pressure - sticking 
region

• Use the same method as for sliding 
• Substitute µp = τflow, 
• Assume Tresca yield criterion

dr
h

dp flowτ2
−=

dphrdrpr ⋅−=⋅µ2

dphrdrrflow ⋅−=⋅τ2
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Forging pressure - sticking 
region
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Forging pressure - sticking 
region
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Average forging pressure -
sticking
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Average forging pressure - sticking
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Forging force – sticking region

2
kaveaveforging rpApF ⋅⋅=⋅= π

( ) 2

3
2exp2 k

k
kflowforging r

h
rrR

h
F ⋅⋅








+



 −⋅= πµτ



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

20

Sticking and sliding

• If you have both sticking and sliding, and you 
can’t approximate by one or the other,

• Then you need to include both in your 
pressure and average pressure calculations.

( ) ( )stickingaveslidingaveforging ApApF ⋅+⋅=

stickingslidingforging FFF +=
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Strain hardening
(cold - below recrystallization

point)

n
flow KY ετ ==2

Tresca
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Strain rate effect
(hot – above recrystallization point)

Tresca

( )mflow CY ετ &==2

heightousinstantane
velocityplaten

h
v

dt
dh
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Flash for closed die forging
(plane strain)

• Say we have a typical flash with 
thickness h/20 and length w/4

w
w/4

h/20
h
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Average forging pressure

• in forging (Tresca)

• in flash (Tresca)
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Flash

• Flash’s high deformation resistance results 
in filled mold

• Process wouldn’t work without friction
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Deformation Work
In general, work done in bulk deformation processes 

has three components

Total work, W = Wideal + Wfriction + Wredundant

Work of ideal plastic deformation, Wideal

= (area under true stress-true strain curve)(volume)

=             (volume)
For a true stress-true strain curve               :











∫ ttd
t

εσ
ε

0

n
tt Kεσ =

( ) ( ) tf

n
t

ideal Y
n
KW εε volume

1
volume

1

=







+

=
+

stress flow Avg. =fY



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

27

Deformation Work
Friction between dies and workpiece
causes inhomogeneous (non-uniform) 
deformation called barreling

Barreling 
Effect

Frictional Forces
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Deformation Work

Internal shearing of material requires 
redundant work to be expended

Ideal Deformation Redundant Deformation
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Redundant Zone
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Closed/Impression Die Forging
• Analysis more complex due to large 

variation in strains in different parts of 
workpiece

• Approximate approaches

– Divide forging into simple part shapes e.g. 
cylinders, slabs etc. that can be analyzed 
separately

– Consider entire forging as a simplified shape
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Closed/Impression Die Forging
Steps in latter analysis approach
• Step 1: calculate average height from 

volume V and total projected area At of 
part (including flash area)

• Step 2: 

Lw
V
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Vh
t
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Closed/Impression Die Forging
• Step 3: calculate flow stress of material Yf

for cold/hot working

• Step 4:

Kp = pressure multiplying factor
= 3~5 for simple shapes without flash
= 5~8 for simple shapes with flash
= 8~12 for complex shapes with flash

tfpavg AYKF == load forging Avg.
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Other Analysis Methods
• Complex closed die forging simulated 

using finite element software

Source: http://nsmwww.eng.ohio-state.edu/html/f-flashlessforg.html
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Upper Bound Theorem

• Any estimate of the collapse load of a 
structure made by equating the internal 
rate of energy dissipation to the rate at 
which external forces do work in some 
assumed pattern of deformation will be > 
or = to the correct load.
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Upper Bound Theorem 
Assumptions

• Isotropic and homogeneous
• Neglect strain hardening and strain rate
• Frictionless or constant shear stress 

condition exists at tool-work piece 
interface

• 2-D, plane strain with all deformation 
occurring by shear on a few planes.  
Elsewhere, material is rigid.
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Upper Bound Theorem

• k = shear flow stress
• Si = length of shear plane
• Vι

* = velocity of shear

∑
=

∗=
n

i
iiVkSdt

dW

1
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Upper Bound Theorem

• Indentation of a plate (slip-line analysis)

wL

F

h = ∞

p
A

BC

D

C’

A’ D’ vovBA

vCA vDC

vBC
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Work, shearing force

• Work is done by shearing 
along AB, BC, AC, and CD.
– Lengths calculated from figure 

at right.
• Shearing force along any 

boundary, per unit length, w, 
is k (shear yield stress) 
times the length of the 
boundary, L.

A

BC

D

C’

A’ D’
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Shearing velocities
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Motions



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

41

Total power delivered

• each term has been counted twice
– due to symmetry

• Simplifying
p = 6k
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Total power delivered
p = 6k

• using von Mises

• hence 
YYk ⋅== 577.0

3

YYp ⋅== 46.3
3

6
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Exact solution

p = 5.14 k = 2.97 Y

• Solution above
p = 6 k = 3.46 Y

• so we can see the effect of constraint
– redundant work: higher pressure
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Non-homogeneous deformation 
and Redundant work

• If the slab is thick or friction:
– non-homogeneous deformation
– redundant work

• If the slab is thin or unconstrained: 
(e.g., open die forging without friction)
– no redundant work
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Indenting at h/L =1
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v1v1
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Analysis - power delivered

p = 2k = 1.15 Y (plane strain result) 
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Redundant work limit (∆ = h/L)
(plane strain)

• h/L < 1:  no redundant work
– p = 1.15 Y

• 1 < h/L < 8.7:  some redundant work
– 1.15 Y < p < 2.97 Y

• h/L > 8.7:  redundant work
– same as infinite plate  
– p = 2.97 Y



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

48

Redundant work correction 
factor (Qr)

• Can be characterized by:
p = Qr Y

or
Qr = p/σy = p/2τy (by Tresca)

• where Qr = correction factor for redundant 
work
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Redundant work factor 
(Backofen)
(frictionless)

Qr =
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Redundant work factor 
(Kalpakjian) -

(friction)
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Summary
• Slab analysis

– frictionless
– with friction
– Rectangular
– Cylindrical

• Strain hardening and rate effects
• Flash
• Redundant work


