ME 649
Instructor: Ramesh Singh
HW\#3

1. A 5 mm thick Al-alloy strip is rolled to a thickness of 4 mm using steel rollers of radius 100 mm . The tensile yield stress of the material is $0.28 \mathrm{KN} / \mathrm{mm}^{2}$ Determine:

- The minimum coefficient of friction $\mu_{\min }$ between the strip and the rolls for an unaided bite to be possible
- The angle subtended by the contact zone at the roll center
- The location of neutral point with $\quad \mu=\mu_{\text {min }}$

2. A 75 mm thick by 250 mm wide slab of AISI 4135 steel is being cold-rolled to a thickness of 60 mm in a single pass. Assume the coefficient of friction $\mu=0.2$. Is the desired reduction feasible without any external force? A two-high non-reversing rolling mill (shown below) with 750 mm diameter rolls made of tool steel is available for this task. The rolling mill has a power capacity of 5 MW per roll. The rolls rotate at a constant angular speed of 100 rpm . The steel work material has the following flow curve at the rolling temperature: $\sigma_{t}=800 \varepsilon_{t}^{0.14} \mathrm{MPa}$. Is the available rolling mill adequate for the desired operation?

3. A round wire made of perfectly plastic material with a yield stress of $30,000 \mathrm{psi}$ is drawn from 0.1 " to 0.7 " in a draw die of 15^{0}. Let the coefficient of friction be 0.1 . Use ideal deformation approximation and the drawing stress equation to estimate the drawing forces. Comment on any differences in your answer.
4. You are cold, forward extruding a metal from an initial diameter of 75 mm to a final diameter of 20 mm . The initial length of the billet is 2 m . The metal has $\mathrm{K}=965 \mathrm{MPa}$, and n $=0.19$. The die angle is 90 degrees.

- Determine the maximum power for an extrusion velocity of $1.5 \mathrm{~m} / \mathrm{s}$.
- The die can be used until its diameter wears 10%. Determine how this will affect your answer.

