What is Bulk Deformation?

* Imparting changes in material (dM~0):
— Geometry
* Force
* Die
— Material properties and Mechanics
» Strength
» Hardness
* Toughness
* Yield Criteria
* Theory of plasticity
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Part 1- Mechanics Review

Concept of stress and strain, True and engineering

Stresses in 2D/3D, Mohr's circle (stress and strain) for
2D/3D

Elements of Plasticity

Material Models

Yielding criteria, Tresca and Von Mises
Invariants of stress and strain

Levy-Mises equations

Strengthening mechanisms

Basic formulation of slip line in plane strain
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Part 2- Bulk Deformation

* Process description, videos and first order
mathematical analysis

— Plane strain forging
— Cylindrical forging
— Closed die forging
— Rolling

— Drawing

— Tube drawing

— Extrusion
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Outline

Stress and strain
— Engineering stresses/strain
— True stresses/strain

Stress tensors and strain tensors
— Stresses/strains in 3D
— Plane stress and plane strain

Principal stresses
Mohr's circle in 2D/3D
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#1 - Match

a) Force equilibrium 1) 06;=0,+ 0,

b) Compatibility of 2) 2F=0; XM=0
deformation

c) Constitutive 3) o=Ee
equation

Prof. Ramesh Singh



Steps of a Mechanics Problem

O Read and understand problem
1 Free body diagram

2 Equilibrium of forces

— e.g. 2F=0, ZM=0.

3 Compatibility of deformations
— e.g.5;,=08,+D,

4 Constitutive equations
—eg.c=Ee

5 Solve

A

— <—F

Prof. Ramesh Singh




Key Concepts

Load (Force), P, acting over area,

A, gives rise to stress, o.

P— . P

Engineering stress: o = P/A,

(A, = original area)

True stress: o, = P/A

(A = actual area)
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Deformation

Quantified by strain, e or ¢

Engineering strain: e = (I¢-)/l,

True Strain: ¢ = In(l/1)

d
Shear strain: y = a/b b
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True and Engineering strains

e = (I-1)/1

e = (/1) -1

(/) =e + 1
In(l/l.) = In(e + 1)
ce=In(e+ 1)
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3-D Stress State in Cartesian Plane

Courtesy: http://www.jwave.vt.edu/crcd/kriz/lectures/Anisotropy.html
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There are two subscripts in any stress component:

Direction of normal vector of the plane (first subscript)

Wy

Direction of action (second subscriptz) - h Singh
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Stress Tensor

On Ty Ty O Opn O3
T O, T, Oy O Op
T T, O O3 O3 O35

Mechanics Notation Expanded Tensorial Notation

It can also be written as oj; in condensed form and is a second
order tensor, where i and j are indices
The number of components to specify a tensor

* 3", where n is the order of matrix
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Symmetry in Shear Stress

* |deally, there has to be nine components
« For small faces with no change in stresses

« Moment about z-axis, [ o
Txy — Tyx .. - 5 I-.:'- 'jrj-r_ |
Similarly, | e o,
z-yz — sz : : : :Ff‘r::-___
T,.=7T,. ) Ay

« Tensor becomes symmetric and have only six components, 3
normal and 3 shear stresses
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Plane Stress
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Only three components of stress
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http://www.shodor.org/~jingersoll/weave4/tutorial/Figures/sc.jpg
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2-D Stresses at an Angle
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Shear Stress on Inclined Plane

™

S fi= T dA—(o, dA cosfl) sin 0—(7,, dA cosf) cosO+(o, dA sind) cosO+(7,, dA sinfl) sinf) = El:

, 2 . 2 v
Tat = —(0, — 0y) sinflcosf + 7,y (cos” f — sin” O
Tnt = —1 (c’:l" — T ) in 26 2f)
= —5 (0 —0y) sin Tyy COS
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Transformation Equations

E'I.

Uy

n'|
Use 6 and 90 +6 for x and y directions, respectively

a 1 1
O = 5 (0x + oy) 5 (0x — 0y) cos20+ 7, sin20
T | 1
Oy =75 (s +0y) — 5 (0x — oy) cos20 — 1., sin20
a 1 . ;
Ty = —5 (0. —0y) sin20 + 7, cos20
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Principal Stresses

For principal stresses t,,=0

1

—— (0, — 0y) sin20 + 7., cos20
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Principal Stresses

» Substituting values of sin20, and cos26,, in
transformation equation we get principal stresses

Angle of maximum shear stress, 6,

drt’ o, -0
o _ 4 ( : xsin219+rxycos20)=0

i9  dg

tan 20 = — 2

Txy

The maximum principal stress plane,

T,
tan 2(9p =
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Maximum Shear Stresses

tan 26, = —cot20,
20, =26, +90
0, =6,+45

substituting value of €, in 7

2
O,—0O
_ Y 2
Tmax_\/[ 9 j +Txy
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Equations of Mohr’s Circle

| . .

(0x +0y) 5 (0, — 0,) cos20+ 7., sin2f
1

1

5 (o — 0y) sin2f + 7,,, cos26
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Mohr's Circle

From the
Pythagorean
theorem, the radius
of Mohr's circle is:

N R
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Sec, 6.4 Plane Stress Reconsidered ag a Three-Dimensional Case 227

Figure 6.14 Failure of a 15 mm thameter co
pressure from frecemg.
occurred on a plane inclined 45

pper water pipe due 10 cxcess
In the cruss section on the right, note that fuilore

1o the tube surface, which is the plane of the
maximum shear stress, (Phiotos by R. A. Simonds, )
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ec. 4.6 Compression Tesl 137

‘ o

f metals (Teft to night); untested spec-
iron. oheminue alloy 7075-T651, anil
before testing were approximately 13
R. A. Simonds, )

Figure 423 Compression specimens o
imen. and tested specimens of gray casl
hatrolled AISI 1020 steel. Diameters

mim, and lengths were 76 mm. (Phano by

T COMPIession specimens

Figure 4.24 Untested and tested 1350 mm dhamete
by R. A Spmonds. )

of concrete with Hokie limestone aggregate. (Photo

I 1VI. IdI1ivoll Ulllsll




Sec, 4.10 Sumimary 155
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Figure 4,40 Typical lorsion 1: dlures shiow
cast iron, and ductile hehavior (helow m a

by R A Simonds. ]

ing hrittle behayior {abowve ) in gray
tuminum alloy 2024-T351. (Phota
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