Deformation Processing Rolling

ver. 1

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Overview

- Process
- Equipment
- Products
- Mechanical Analysis
- Defects

Process

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Process

Process

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Ring Rolling

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Equipment

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Equipment

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Products

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Products

- Shapes
- I-beams, railroad tracks
- Sections
- door frames, gutters
- Flat plates
- Rings
- Screws

Products

- A greater volume of metal is rolled than processed by any other means.

Rolling Analysis

- Objectives
- Find distribution of roll pressure
- Calculate roll separation force ("rolling force") and torque
- Processing Limits
- Calculate rolling power

Flat Rolling Analysis

- Consider rolling of a flat plate in a 2-high rolling mill

Width of plate w is large \rightarrow plane strain

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Flat Rolling Analysis

- Friction plays a critical role in enabling rolling $\rightarrow \mu \geq \tan \alpha$ cannot roll without friction; for rolling to occur
- Reversal of frictional forces at neutral plane (NN)

Flat Rolling Analysis

Stresses on Slab in Entry Zone

Stresses on Slab in Exit Zone

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Equilibrium

- Appling equilibrium in x (top entry, bottom exit)

$$
\left(\sigma_{x}+d \sigma_{x}\right) \cdot(h+d h)-2 p R \cdot d \phi \cdot \sin \phi \pm 2 \mu p R \cdot d \phi \cdot \cos \phi-\sigma_{x} h=0
$$

Simplifying and ignoring HOTs

$$
\frac{d\left(\sigma_{x} h\right)}{d \phi}=2 p R \cdot(\sin \phi \mp \mu \cos \phi)
$$

Simplifying

- Since $\alpha \ll 1$, then $\sin \phi=\phi, \cos \phi=1$

$$
\frac{d\left(\sigma_{x} h\right)}{d \phi}=2 p R \cdot(\phi \mp \mu)
$$

- Plane strain, von Mises

$$
p-\sigma_{x}=1.15 \cdot Y_{\text {flow }} \equiv Y_{\text {flow }}^{\prime}
$$

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Differentiating

- Substituting

$$
\frac{d\left[\left(p-Y_{\text {flow }}^{\prime}\right) \cdot h\right]}{d \phi}=2 p R \cdot(\phi \mp \mu)
$$

- or

$$
\frac{d}{d \phi}\left[Y_{\text {flow }}^{\prime} \cdot\left(\frac{p}{Y_{\text {flow }}^{\prime}}-1\right) \cdot h\right]=2 p R \cdot(\phi \mp \mu)
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Differentiating

$$
Y_{\text {flow }}^{\prime} \cdot h \cdot \frac{d}{d \phi}\left(\frac{p}{Y_{\text {flow }}^{\prime}}\right)+\left(\frac{p}{Y_{\text {flow }}^{\prime}}-1\right) \cdot \frac{d}{d \phi}\left(Y_{\text {flow }}^{\prime} \cdot h\right)=2 p R \cdot(\phi \mp \mu)
$$

Rearranging, the variation $Y_{\text {'fow }}$.h with respect to ϕ is small compared to the variation $\mathrm{p} / \mathrm{Y}_{\text {fiow }}^{\prime}$ with respect to ϕ so the second term is ignored

$$
\left.\frac{\frac{d}{d \phi}\left(\frac{p}{Y_{\text {flow }}^{\prime}}\right)}{\frac{p}{Y_{\text {flow }}^{\prime}}=\frac{2 R}{h}(\phi \mp \mu)} \quad \begin{array}{c}
\text { Prof. Ramesh Singh, Notes by Dr. } \\
\text { Singh/ Dr. Colton }
\end{array}\right)
$$

Thickness

$$
h=h_{f}+2 R \cdot(1-\cos \phi)
$$

from the definition of a circular segment

or, after using a Taylor's series expansion, for small ϕ

$$
h=h_{f}+R \cdot \phi^{2} \quad \cos \phi=1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!} \cdots
$$

$$
\begin{aligned}
& \text { Substituting and integrating } \\
& \int \frac{\left(\frac{p}{Y_{\text {fow }}}\right)}{\frac{p}{Y_{\text {flow }}}}=\int \frac{2 R}{h_{f}+R \cdot \phi^{2}}(\phi \mp \mu) d \phi \\
& m(t)=\int \frac{2 R(\phi-\mu)}{h f+R \phi^{2}} d \phi
\end{aligned}
$$

$$
\text { Out[1] }=2 \mathrm{R}\left(-\frac{\mu \operatorname{ArcTan}\left[\frac{\sqrt{\mathrm{R}} \phi}{\sqrt{\mathrm{hf}}}\right]}{\sqrt{\mathrm{hf}} \sqrt{\mathrm{R}}}+\frac{\log \left[\mathrm{hf}+\mathrm{R} \phi^{2}\right]}{2 \mathrm{R}}\right)
$$

$$
\ln \frac{p}{Y_{f}^{\prime}}=\ln \frac{h}{R} \mp 2 \mu \sqrt{\frac{R}{h_{f}}} \tan ^{-1}\left(\phi \sqrt{\frac{R}{h_{f}}}\right)+\ln C
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Eliminating $\operatorname{In}()$

$$
\begin{aligned}
& p=C \cdot Y_{\text {flow }}^{\prime} \cdot \frac{h}{R} \exp (\mp \mu H) \\
& H=2 \sqrt{\frac{R}{h_{f}}} \tan ^{-1}\left(\phi \sqrt{\frac{R}{h_{f}}}\right)
\end{aligned}
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Entry region

- at $\phi=\alpha, \mathrm{H}=\mathrm{H}_{\mathrm{b}}$,

$$
\begin{aligned}
p & =C \cdot Y_{\text {flow }}^{\prime} \cdot \frac{h}{R} \exp (-\mu H) \\
C & =\frac{R}{h_{b}} \exp \left(\mu H_{b}\right) \quad p=Y_{\text {flow }}^{\prime} \frac{h}{h_{b}} \exp \left(\mu\left[H_{b}-H\right]\right)
\end{aligned}
$$

$$
\left.p=\left(Y_{\text {flow }}^{\prime}-\sigma_{x b}\right) \frac{h}{h_{b}} \exp \left(\mu\left[H_{b}-H\right]\right) \quad \text { With back tension=(Y'flow }-\sigma_{x 0}\right)
$$

$$
H_{b}=2 \sqrt{\frac{R}{h_{f}}} \tan ^{-1}\left(\alpha \sqrt{\frac{R}{h_{f}}}\right) \quad H=2 \sqrt{\frac{R}{h_{f}}} \tan ^{-1}\left(\phi \sqrt{\frac{R}{h_{f}}}\right)
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Exit region

$$
\text { at } \phi=0, H=H_{f}=0 \text {, }
$$

$$
\begin{aligned}
& C=\frac{R}{h_{f}} \quad p=\left(Y_{\text {flow }}^{\prime}\right) \frac{h}{h_{f}} \exp (\mu H) \\
& p=\left(Y_{\text {flow }}^{\prime}-\sigma_{x f}\right) \frac{h}{h_{f}} \exp (\mu H) \quad \text { With forward tension }
\end{aligned}
$$

$$
H=2 \sqrt{\frac{R}{h_{f}}} \tan ^{-1}\left(\phi \sqrt{\frac{R}{h_{f}}}\right)
$$

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Effect of back and front tension

distance

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Flat Rolling Analysis Results without front and back tension

Using slab analysis we can derive roll pressure distributions for the entry and exit zones as: h_{0} and h_{b} are the same thing

$$
p=\frac{2}{\sqrt{3}} Y_{f} \frac{h}{h_{0}} e^{\mu\left(H_{0}-H\right)}
$$

Entry Zone

$$
H=2 \sqrt{\frac{R}{h_{f}}} \tan ^{-1}\left(\sqrt{\frac{R}{h_{f}}} \phi\right)
$$

$$
H_{0}=H @ \phi=\alpha
$$

$$
p=\frac{2}{\sqrt{3}} Y_{f} \frac{h}{h_{f}} e^{\mu H}
$$

Exit Zone

Average rolling pressure - per unit width

$$
p_{\text {ave,entry }}=-\frac{1}{R\left(\alpha-\phi_{n}\right)} \int_{\alpha}^{\phi_{n}} p_{\text {entry }} R d \phi ; p_{\text {ave,exit }}=\frac{1}{R \phi_{n}} \int_{0}^{\phi_{n}} p_{\text {exit }} R d \phi
$$

Rolling force

- $F=p_{\text {ave,entry }} \times$ Area $_{\text {entry }}+p_{\text {ave,exit }} \times$ Area $_{\text {exit }}$

Force

- An alternative method

$$
F=\int_{\phi_{n}}^{\alpha} w \cdot p_{\text {entry }} \cdot R \cdot d \phi+\int_{0}^{\phi_{n}} w \cdot p_{\text {exit }} \cdot R \cdot d \phi
$$

- again, very difficult to do.

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Force - approximation

$\mathrm{F} /$ roller $=\mathrm{L} w \mathrm{p}_{\text {ave }}$

$$
L \approx \sqrt{R \Delta h}
$$

$$
\Delta h=h_{b}-h_{f}
$$

$$
p_{\text {ave }}=f\left(\frac{h_{\text {ave }}}{L}\right)
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Derivation of "L"

circular segment

$$
h=h_{f}+2 R \cdot(1-\cos \phi)
$$

Taylor's expansion

$$
\cos \phi=1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!} \cdots
$$

$$
h=h_{f}+R \cdot \phi^{2}
$$

$$
R \cdot \phi=L
$$

Derivation of "L"

setting $h=h_{b}$ at $\phi=\alpha$, substituting, and rearranging

$$
h_{b}-h_{f}=\Delta h=R \cdot\left(\frac{L}{R}\right)^{2}
$$

or

$$
L=\sqrt{R \cdot \Delta h}
$$

Approximation based on forging plane strain - von Mises

$$
p_{\text {ave }}=1.15 \cdot \bar{Y}_{\text {flow }}\left(1+\frac{\mu L}{2 h_{\text {ave }}}\right)
$$

average flow stress: due to shape of element

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Small rolls or small reductions

$$
\Delta=\frac{h_{\text {ave }}}{L} \gg 1
$$

- friction is not significant (μ-> 0)

$$
\begin{aligned}
& p_{\text {ave }}=1.15 \cdot \bar{Y}_{\text {flow }}\left(1+\frac{\searrow \mu L}{2 \lambda_{\text {dve }}}\right) \\
& p_{0}=1.15 \cdot \bar{Y}_{\text {flow }}
\end{aligned}
$$

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Large rolls or large reductions

$$
\Delta \equiv \frac{h_{\text {ave }}}{L} \ll 1
$$

- Friction is significant (forging approximation)

$$
p_{\text {ave }}=1.15 \cdot \bar{Y}_{\text {flow }}\left(1+\frac{\mu L}{2 h_{\text {ave }}}\right)
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Force approximation: low friction

$$
\begin{aligned}
& \Delta \equiv \frac{h_{\text {ave }}}{L} \gg 1 \\
& F / \text { roller } \\
& =1.15 \cdot L w \bar{Y}_{\text {flow }}
\end{aligned}
$$

Force approximation: high friction

$$
\begin{aligned}
& \Delta \equiv \frac{h_{\text {ave }}}{L} \ll 1 \\
& F / \text { roller } \\
& =1.15 \cdot L w \bar{Y}_{\text {fow }}\left(1+\frac{\mu L}{2 h_{\text {ave }}}\right)
\end{aligned}
$$

Zero slip (neutral) point

- Entrance: material is pulled into the nip
- roller is moving faster than material
- Exit: material is pulled back into nip - roller is moving slower than material

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

System equilibrium

- Frictional forces between roller and material must be in balance.
- or material will be torn apart
- Hence, the zero point must be where the two pressure equations are equal.

$$
\frac{h_{b}}{h_{f}}=\frac{\exp \left(\mu H_{b}\right)}{\exp \left(2 \mu H_{n}\right)}=\exp \left(\mu\left(H_{b}-2 H_{n}\right)\right)
$$

Neutral point

$$
\begin{gathered}
H_{n}=\frac{1}{2}\left(H_{b}-\frac{1}{\mu} \ln \frac{h_{b}}{h_{f}}\right) \\
\phi_{n}=\sqrt{\frac{h_{f}}{R}} \tan \left(\frac{H_{n}}{2} \sqrt{\frac{h_{f}}{R}}\right)
\end{gathered}
$$

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Torque

$$
\begin{aligned}
& L \approx \sqrt{R \Delta h} \\
& \Delta \mathrm{~h}=\mathrm{h}_{\mathrm{b}}-\mathrm{h}_{\mathrm{f}} \\
& \sum F_{y}=0 \\
& \therefore F_{\text {roller }}=p_{\text {ave }} A
\end{aligned}
$$

$$
T=\int_{\phi_{n} \text { entry }}^{\alpha} w \mu p R^{2} d \phi-\int_{0}^{\phi_{n}} w \mu p R^{2} d \phi
$$

$$
\text { Torque } / \text { roller }=r \cdot F_{\text {roller }}=\frac{L}{2} \cdot F_{\text {roller }}=\frac{F_{\text {roller }} L}{2}
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Power

Power $/$ roller $=T \omega=F_{\text {roller }} L \omega / 2$
 $\omega=2 \pi \mathrm{~N}$
 $\mathrm{N}=[\mathrm{rev} / \mathrm{min}]$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Processing limits

- The material will be drawn into the nip if the horizontal component of the friction force $\left(F_{f}\right)$ is larger, or at least equal to the opposing horizontal component of the normal force $\left(F_{n}\right)$.

$$
\begin{aligned}
& F_{f} \cos \alpha \geq F_{n} \sin \alpha \\
& F_{f}=\mu \cdot F_{n} \\
& \tan \alpha=\mu
\end{aligned}
$$

$\mu=$ friction coefficient

Prof. Ramesh Singh, Notes by Dr.

Processing limits

Also

$$
\begin{aligned}
& \cos \alpha=\frac{R-\frac{\Delta h}{2}}{R}=1-\frac{\Delta h}{2 R} \\
& \text { and } \ll R \quad \sin \alpha=\sqrt{1-\cos ^{2} \alpha}
\end{aligned}
$$

$$
\sin \alpha=\sqrt{1-1+\frac{\Delta h}{2 R}-\left(\frac{\Delta h}{2 R}\right)^{2}} \quad \sin \alpha \approx \sqrt{\frac{\Delta h}{R}}
$$

$$
\tan \alpha=\sqrt{\frac{\frac{\Delta h}{R}}{1-\frac{\Delta h}{R}+\left(\frac{\Delta h}{2 R}\right)^{2}}} \cong \sqrt{\frac{\Delta h}{R-\Delta h}} \approx \sqrt{\frac{\Delta h}{R}}
$$

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Processing limits

So, approximately

$$
(\tan \alpha)^{2}=\mu^{2}=\frac{\Delta h}{R}
$$

Hence, maximum draft

$$
\Delta h_{\max }=\mu^{2} R
$$

Maximum angle of acceptance

$$
\phi_{\max }=\alpha=\tan ^{-1} \mu
$$

Processing Limits

Cold rolling
 (below recrystallization point) strain hardening, plane strain - von Mises

$$
2 \tau_{\text {flow }}=1.15 \cdot \bar{Y}_{\text {flow }}=1.15 \cdot \frac{K \varepsilon^{n}}{n+1}
$$

average flow stress:
due to shape of element

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Hot rolling -

 (above recrystallization point) strain rate effect, plane strain - von Mises- Average strain rate

$$
\begin{aligned}
& \dot{\bar{\varepsilon}}=\frac{\bar{\varepsilon}}{t}=\frac{V_{R}}{L} \ln \left(\frac{h_{b}}{h_{f}}\right) \\
& 2 \tau_{\text {flow }}=1.15 \cdot \bar{Y}_{\text {flow }}=1.15 \cdot C \cdot \dot{\bar{\varepsilon}}^{m}
\end{aligned}
$$

average flow stress: due to shape of element

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Example 1.1

- Cold roll a 5\% Sn-bronze
- Calculate force on roller
- Calculate power
- Plot pressure in nip (no back or forward tension)

Example 1.2

- $w=10 \mathrm{~mm}$
- $\mathrm{h}_{\mathrm{b}}=2 \mathrm{~mm}$
- height reduction $=30 \%\left(\mathrm{~h}_{\mathrm{f}}=0.7 \mathrm{~h}_{\mathrm{b}}\right)$
$-h_{f}=1.4 \mathrm{~mm}$
- $\mathrm{R}=75 \mathrm{~mm}$
- $\mathrm{v}_{\mathrm{R}}=0.8 \mathrm{~m} / \mathrm{s}$
- mineral oil lubricant $(\mu=0.1)$
- $\mathrm{K}=720 \mathrm{MPa}, \mathrm{n}=0.46$

Example 1.3

- Maximum draft:

$$
\begin{aligned}
& \Delta \mathrm{h}_{\max }=\mu^{2} \mathrm{R} \\
& \quad=(0.1)^{2} \cdot 75=0.75 \mathrm{~mm} \\
& \begin{aligned}
\Delta \mathrm{h}_{\text {actual }} & =\mathrm{h}_{\mathrm{b}}-\mathrm{h}_{\mathrm{f}}=2-1.4 \\
& =0.6 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

Example 1.4

- Maximum angle of acceptance

$$
\begin{aligned}
& \phi_{\max }=\tan ^{-1} \mu=\tan ^{-1}(0.1)=0.1 \text { radian } \\
& \alpha=\sqrt{\left(h_{b}-h_{f}\right) / R}=\sqrt{(2-1.4) / 75} \\
& =0.089 \mathrm{rad}=5.12^{\circ}
\end{aligned}
$$

Example 1.5

- Roller force: $F=L w p_{\text {ave }}$
- $L=(R \Delta h)^{0.5}=[75 \times(2-1.4)]^{0.5}$

$$
=6.7 \mathrm{~mm}
$$

- $\mathrm{w}=10 \mathrm{~mm}$
- $\mathrm{h}_{\mathrm{ave}}=\left(\mathrm{h}_{\mathrm{b}}+\mathrm{h}_{\mathrm{f}}\right) / 2=1.7 \mathrm{~mm}$

$$
h_{\text {ave }} / L=1.7 / 6.7=0.25<1
$$

\therefore friction is important

$$
F / \text { roller }=1.15 \cdot L w \bar{Y}_{\text {fow }}\left(1+\frac{\mu L}{2 h_{\text {ave }}}\right)
$$

Example 1.6

$$
\begin{aligned}
& \varepsilon_{f}=\left|\ln \left(\frac{h_{f}}{h_{b}}\right)\right|=\left|\ln \left(\frac{1.4}{2}\right)\right|=0.36 \\
& 2 \tau_{\text {flow }}=1.15 \cdot \bar{Y}=1.15 \cdot \frac{K \varepsilon_{f}^{n}}{n+1} \\
& =1.15 \cdot \frac{720 \cdot(0.36)^{0.46}}{1.46}=354 \mathrm{MPa}
\end{aligned}
$$

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Example 1.7

$$
\begin{aligned}
& F / \text { roller }=1.15 \cdot L w \bar{Y}_{\text {flow }}\left(1+\frac{\mu L}{2 h_{\text {ave }}}\right) \\
& =6.7 \times 10^{-3} \cdot 10 \times 10^{-3} \cdot 354 \times 10^{6} \\
& \times\left(1+\frac{0.1 \times 6.7}{2 \times 1.7}\right) \\
& =28,392 \mathrm{~N}=3.2 \text { tons }
\end{aligned}
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Example 1.8

$$
\begin{aligned}
& \operatorname{Power}(\mathrm{kW}) / \text { roller }
\end{aligned}=T \times \omega=\frac{F \cdot L \cdot V_{R}}{2 \cdot R}, \begin{aligned}
\text { Power }(\mathrm{kW}) / \text { roll } & =\frac{28,392 \cdot 6.7 \times 10^{-3} \cdot 0.8}{2 \cdot 0.075} \\
& =1.01 \mathrm{~kW} / \mathrm{roll}=1.35 \mathrm{hp}
\end{aligned} .
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Example 1.9

- Entrance

$$
p=\left(Y_{\text {flow }}^{\prime}-\sigma_{x b}\right) \frac{h}{h_{b}} \exp \left(\mu\left(H_{b}-H\right)\right)
$$

- Exit

$$
p=\left(Y_{\text {flow }}^{\prime}-\sigma_{x f}\right) \frac{h}{h_{f}} \exp (\mu(H))
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Example 1.10

$$
\begin{aligned}
& \phi=\sqrt{\left(h-h_{f}\right) / R} \\
& H=2 \sqrt{\frac{R}{h_{f}}} \tan ^{-1}\left(\phi \sqrt{\frac{R}{h_{f}}}\right)
\end{aligned}
$$

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Example 1.11

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Rolling

Shear stress

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Normal Stress

EFFECT OF FINISH HOT-ROLLING ON THE STRIP SHAPE AND THE AUSTENITE GRAIN STRUCTURE.

Initial Grain Shape.
Equixed, Strain-Free

Final Grain Shape.
Equixed, Strain-Free

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Widening of material

Side view

Top view

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Residual stresses due to frictional constraints

a) small rolls or small reduction (ignore friction)
b) large rolls or large reduction (include friction)

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Defects

- a) wavy edges
- roll deflection
- b) zipper cracks
- low ductility

- c) edge cracks
- barreling
- d) alligatoring
- piping, inhomogeniety
(d)

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Roll deflection

Rolls can deflect under load

Rolls can be crowned

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Roll deflection

Rolls can be stacked for stiffness

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Method to reduce roll deflection

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Summary

- Process
- Equipment
- Products
- Mechanical Analysis
- Defects

Prof. Ramesh Singh, Notes by Dr.
Singh/ Dr. Colton

Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

