
Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

1

Deformation Processing -
Rolling

ver. 1



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

2

Overview

• Process
• Equipment
• Products
• Mechanical Analysis
• Defects
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Process



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

4

Process
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Process
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Ring Rolling
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Equipment
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Equipment
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Products
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Products
• Shapes

– I-beams, railroad tracks
• Sections

– door frames, gutters
• Flat plates
• Rings
• Screws
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Products

• A greater volume of metal is rolled 
than processed by any other 
means.
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Rolling Analysis
• Objectives

– Find distribution of roll pressure
– Calculate roll separation force (“rolling 

force”) and torque
– Processing Limits
– Calculate rolling power
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Flat Rolling Analysis
• Consider rolling of a flat plate in a 2-high 

rolling mill

Width of plate w is large plane strain

hb hf

R

V0 Vf (> V0)

θ
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Flat Rolling Analysis

• Friction plays a critical role in enabling rolling 
cannot roll without friction; for rolling to occur

• Reversal of frictional forces at neutral plane (NN)

hb hf

V0 Vf (> V0)
α

L

Entry Zone Exit Zone

N

N

tanµ α≥
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Flat Rolling Analysis

hb hf

φ
N

N
dx

p

p

µp

µp

σxσx + dσx

Stresses on Slab in Entry Zone

Stresses on Slab in Exit Zone

p

p
µp

µp

σxσx + dσx
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Equilibrium

Simplifying and ignoring HOTs

( ) ( )φµφ
φ

σ cossin2 m⋅= pR
d
hd x

( ) ( ) 0cos2sin2 =−⋅⋅±⋅⋅−+⋅+ hdpRdpRdhhd xxx σφφµφφσσ

• Appling equilibrium in x (top entry,  bottom exit)
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Simplifying

• Since α << 1, then sinφ = φ, cosφ = 1

• Plane strain, von Mises

( ) ( )µφ
φ

σ
m⋅= pR

d
hd x 2

flowflowx YYp ′≡⋅=− 15.1σ
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Differentiating
• Substituting

• or

( )[ ] ( )µφ
φ

m⋅=
⋅′−

pR
d

hYpd flow 2

( )µφ
φ

m⋅=











⋅










−

′
⋅′ pRh
Y
pY

d
d

flow
flow 21
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Differentiating

( ) ( )µφ
φφ

m⋅=⋅′⋅









−

′
+











′
⋅⋅′ pRhY

d
d

Y
p

Y
p

d
dhY flow

flowflow
flow 21

Rearranging, the variation Y’flow.h with respect to φ is small compared to 
the variation p/ Y’flow with respect to φ so the second term is ignored

( )µφ
φ

m
h
R

Y
p
Y
p

d
d

flow

flow 2
=

′












′



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

20

Thickness

( )φcos12 −⋅+= Rhh f

or, after using a Taylor’s series expansion, for small φ

2φ⋅+= Rhh f

L
!4!2

1cos
42 φφφ +−=

0

from the definition
of a circular segment

RR φ

2
fb hh −

L

2
bh

2
fh
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Substituting and integrating

C
h
R

h
R

R
h

Y
p

fff
lntan2lnln 1 +













=

′
− φµm

( ) φµφ
φ

d
Rh
R

Y
p
Y
pd

f
flow

flow ∫∫ ⋅
⋅+

=

′












′
m2

2

In[1]:= ‡ 2 R Hφ − µL
hf + R φ2

 φ

Out[1]= 2 R −

µ ArcTanB R φ

hf
F

hf R
+
LogAhf + R φ2E

2 R
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Eliminating ln()

( )H
R
hYCp flow µmexp⋅′⋅=














= −

ff h
R

h
RH φ1tan2
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Entry region

• at φ = α, H = Hb , 

( )H
R
hYCp flow µ−⋅′⋅= exp

( )b
b

H
h
RC µexp=

( ) [ ]( )HH
h
hYp b
b

xbflow −−′= µσ exp














= −

ff h
R

h
RH φ1tan2














= −

ff
b h

R
h
RH α1tan2

[ ]( )HH
h
hYp b
b

flow −′= µexp

With back tension=(Y’flow – σxb)
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Exit region

at φ = 0, H = Hf =0, 

fh
RC =

( ) ( )H
h
hYp
f

xfflow µσ exp−′=














= −

ff h
R

h
RH φ1tan2

( ) ( )H
h
hYp
f

flow µexp′=

With forward tension
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Effect of back and front tension

Y
xbY σ− xfY σ−

Y

maximum pressure
pressure

distance
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Flat Rolling Analysis Results –
without front and back tension

p

p

µp

µp

σxσx + dσx

Stresses on Slab in Entry Zone Stresses on Slab in Exit Zone
p

p
µp

µp

σxσx + dσx

Using slab analysis we can derive roll pressure distributions for the entry 
and exit zones as: h0 and hb are the same thing

12 tan
f f

R RH
h h

φ−
 

=  
 
 

( )0

0

2
3

H H
f
hp Y e
h

µ −=
2
3

H
f

f

hp Y e
h

µ=

Entry Zone Exit Zoneαφ == @0 HH
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Average rolling pressure – per unit 
width

∫∫ =
−

−=
nn

Rdp
R

pRdp
R

p exit
n

exitaveentry
n

entryave

φφ

α

φ
φ

φ
φα 0

,,
1;

)(
1
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Rolling force

• F = pave,entry x Areaentry + pave,exit x Areaexit
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Force

• An alternative method

• again, very difficult to do.

∫∫ ⋅⋅⋅+⋅⋅⋅=
n

n

dRpwdRpwF exitentry

φα

φ

φφ
0
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Force - approximation

F / roller = L w pave

∆h = hb - hf

hRL ∆≈







=
L
hfp ave

ave
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Derivation of “L”

( )φcos12 −⋅+= Rhh f

L
!4!2

1cos
42 φφφ +−=

0

2φ⋅+= Rhh f

LR =⋅φ

circular segment

Taylor’s expansion

RR φ

2
fb hh −

L

2
bh

2
fh
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Derivation of “L”

setting h = hb at φ = α, substituting, and rearranging

2






⋅=∆=−
R
LRhhh fb

or

hRL ∆⋅=



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

33

Approximation based on forging
plane strain – von Mises









+⋅=

ave

flowave h
LYp

2
115.1 µ

average flow stress:
due to shape of element
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Small rolls or small reductions

• friction is not significant  (µ -> 0)

1>>=∆
L
have

flowave Yp ⋅= 15.1









+⋅=

ave

flowave h
LYp

2
115.1 µ

0
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Large rolls or large reductions

• Friction is significant (forging 
approximation)

1<<≡∆
L
have









+⋅=

ave

flowave h
LYp

2
115.1 µ
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Force approximation: low 
friction

1>>≡∆
L
have

flowYLwroller
F ⋅= 15.1
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Force approximation: high 
friction
1<<≡∆

L
have









+⋅=

ave
flow h

LYLwroller
F

2
115.1 µ
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Zero slip (neutral) point
• Entrance: material is pulled into the nip

– roller is moving faster than material
• Exit:  material is pulled back into nip

– roller is moving slower than material

material
pull-in

vb
vf

vRvR
vR

material
pull-back
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System equilibrium
• Frictional forces between roller and 

material must be in balance.
– or material will be torn apart

• Hence, the zero point must be where 
the two pressure equations are equal.

( )
( )

( )( )nb
n

b

f

b HH
H
H

h
h 2exp

2exp
exp

−== µ
µ
µ
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Neutral point











−=

f

b
bn h

hHH ln1
2
1

µ














=

R
hH

R
h fnf

n 2
tanφ
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Torque

R

Froller

L/2

paveA

hRL ∆≈

∆h = hb - hf

ApF

F

averoller

y

=∴

=∑ 0

22
/ LFFLFrrollerTorque roller

rollerroller =⋅=⋅=

φµφµ
φα

φ

dpRwdpRwT
n

n

∫∫ −=
0

22

entry exit



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

42

Power

Power / roller = Tω = FrollerLω / 2

ω = 2πN
N = [rev/min]
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Processing limits
• The material will be drawn into the nip if the 

horizontal component of the friction force (Ff) is 
larger, or at least equal to the opposing horizontal 
component of the normal force (Fn).

∆h/2

Fn
Ff

R
α

αα

αα sincos nf FF ≥

µα =tan

µ = friction coefficient

nf FF ⋅= µ
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Processing limits

R
h

R

hR

2
12cos ∆

−=

∆
−

=α

Rh <<∆ αα 2cos1sin −=

Also

and

2

22
11sin 






 ∆

−
∆

+−=
R
h

R
hα

0

R
h∆

≈αsin

R
h

hR
h

R
h

R
h
R
h

∆
≈

∆−
∆

≅







 ∆+∆−

∆

= 2

2
1

tanα
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Processing limits
So, approximately

( )
R
h∆

== 22tan µα

Hence, maximum draft

Rh 2
max µ=∆

Maximum angle of acceptance

µαφ 1
max tan−==
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Processing Limits

( ) 2
max

h Rµ∆ =

Max. angle of acceptance

h0 hf

α

R

µαφ 1
max tan−==

Max. reduction in thickness
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Cold rolling 
(below recrystallization point) 

strain hardening, plane strain – von 
Mises

1
15.115.12

+
⋅=⋅=
n
KY

n

flowflow
ετ

average flow stress:
due to shape of element
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Hot rolling –
(above recrystallization point)

strain rate effect, plane strain - von 
Mises

• Average strain rate











==

f

bR

h
h

L
V

t
lnεε&

m
flowflow CY ετ &⋅⋅=⋅= 15.115.12

average flow stress:
due to shape of element
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Example  1.1

• Cold roll a 5% Sn-bronze

• Calculate force on roller
• Calculate power
• Plot pressure in nip (no back or forward 

tension)
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Example 1.2
• w = 10 mm
• hb = 2 mm
• height reduction = 30% (hf = 0.7 hb)

– hf = 1.4 mm
• R = 75 mm
• vR = 0.8 m/s
• mineral oil lubricant (µ = 0.1)
• K = 720 MPa, n = 0.46
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Example 1.3

• Maximum draft:
∆hmax = µ2R

= (0.1)2 • 75 = 0.75 mm
∆hactual = hb - hf = 2 - 1.4 

= 0.6 mm
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Example 1.4

• Maximum angle of acceptance

φmax = tan-1 µ = tan-1(0.1) = 0.1 radian

( ) ( )

o12.5089.0

75
4.12

==

−=
−

=

rad

R
hh fbα
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Example 1.5
• Roller force:  F = L w pave

• L = (R∆h)0.5 = [75 x (2-1.4)]0.5 

= 6.7 mm
• w = 10 mm
• have = (hb+hf) / 2 = 1.7 mm

have / L = 1.7 / 6.7 = 0.25 < 1 
∴ friction is important









+⋅=

ave
flow h

LYLwroller
F

2
115.1 µ
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Example 1.6

36.0
2
4.1lnln =






=








=

b

f
f h

h
ε

( ) MPa

n
K

Y
n

flow
f

354
46.1
36.072015.1

1
15.115.12

46.0

=
⋅

⋅=

+
⋅=⋅=

ε
τ
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Example 1.7

tonsN

h
LYLwroller

F
ave

flow

2.3392,28
7.12
7.61.01

103541010107.6

2
115.1

633

==









×
×

+×

×⋅×⋅×=









+⋅=

−−

µ
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Example 1.8

( )
R
VLFTroller

kWPower R

⋅
⋅⋅

=×=
2

ω

( )

hprollkW

rollkWPower

35.1/01.1
075.02

8.0107.6392,28/
3

==
⋅

⋅×⋅
=

−
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Example 1.9

• Entrance

• Exit

( ) ( )( )HH
h
hYp b
b

xbflow −−= µσ exp'

( ) ( )( )H
h
hYp
f

xfflow µσ exp' −=
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Example 1.10

( )
R

hh f−
=φ














= −

ff h
R

h
RH φ1tan2
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Example 1.11
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Rolling

Shear stress

Normal Stress
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Widening of material 
φ

Side view

Top view
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Residual stresses -
due to frictional constraints

a) small rolls or small reduction (ignore friction)
b) large rolls or large reduction (include friction)
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Defects
• a) wavy edges

– roll deflection

• b)  zipper cracks
– low ductility

• c)  edge cracks
– barreling

• d)  alligatoring
– piping, inhomogeniety
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Roll deflection

Rolls can deflect under load

Rolls can be crowned



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

66

Roll deflection

Rolls can be stacked for stiffness
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Method to reduce roll deflection



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

68

Summary

• Process
• Equipment
• Products
• Mechanical Analysis
• Defects
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