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Overview

• Description
• Characteristics
• Mechanical Analysis
• Thermal Analysis
• Tube drawing
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Geometry
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Equipment
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Cold Drawing
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A. Durer - Wire Drawing Mill 
(1489)

(copper wire)
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Characteristics
• Product sizes:

– 0.0002” (5µm)  to several inches (100-150 
mm)

• Mostly cold (T < 0.4 Tmelting)  
– below recrystallization point

• Small diameter (wire):
– uses a capstan

• Diameter > 1 inch (25 mm) (rod):
– bull blocks on a draw bench
– length up to 40 feet (12 m)
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Characteristics

• Fine wire done through several 
dies

• Speeds
– large diameter: 30 feet per minute 

(9 m/min)
– small diameter: 300 feet per minute 

(90 m/min)
– fine wires: 5,000 feet per minute 

(60 mph – 100 km/h)
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Die Materials
• Large diameter

– high carbon steel
– high speed steel

• Moderate diameter
– tungsten carbide (WC)

• Small diameter
– diamond inserts
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Characteristics

• Lubrication
– Coatings
– Oil

• Die angle (α)
– typically small: 4-6o
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Mechanical analysis (round wire / 
rod)

Reduction in area (RA)
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Slab analysis

Assume p, σx are 
uniform
– OK for small α, µ

σx + dσx
σx

p

p

µp

µp

D
D + dD
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Equilibrium
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Equilibrium
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Equilibrium
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Equilibrium
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Maximum shear stress (Tresca) 
criterion

flowflowx p στσ ==+ 2

B≡
α

µ
tan

p σx

τflow
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Differential form
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Integrating
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Drawing stress

• where:
σxb = back stress (tension)
σxa = pulling stress (tension)

B

b

a

flow

xb

B

b

a

flow

xa

D
D

D
D

B
B

22

2
11

2 







+




















−

+
=

τ
σ

τ
σ

DaDb

σxaσxb

α



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

23

1
2

+
===
n
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n

flowflow
εστ

Strain hardening 
(cold – below recrystallization

point)
• For round parts - Tresca

average flow stress:
due to shape of element
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Strain rate effect
(hot – above recrystallization point)

• For a round part (derived for extrusion)

– average strain rate due to shape of element
– vb = velocity of “b” side
– A = area

m
flowflow CY εστ &===2
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Value for p

p = Y – σ
or

p = 2τflow – σ

maximum at entrance

p σx

τflow
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Effect of back tension

with back tension

without back tension

drawing stress

entry exit

die pressure
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Maximum RA
• Solve previous equations with: 

α = 6o (typical value)
µ = 0.1
∴ B = 1
σxb = 0
For failure: draw stress = material flow {yield} stress

here, say K = 760 MPa, and n = 0.19

1
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Maximum RA

• Yields   RA = 0.6
– must be solved for each µ, α, σxb
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Energy / unit volume (u)

u = F V / Aa V = σxa

(with no back stress)
V= volume
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Rod/Wire Drawing Analysis
• Ideal deformation

External work = Work of ideal plastic 
deformation

for 
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Rod/Wire Drawing Analysis
• Ideal deformation

Drawing force, Fd = σdAf

Drawing power, Pd = Fd Vf

Source: S. Kalpakjian & S. Schmidt, 4th ed. 2003
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Drawing Limit
• Ideal deformation of a perfectly 

plastic material
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Drawing Limit
• Ideal deformation of a strain 

hardening material
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Example Problem
Assuming zero redundant work and frictional work to be 20% of 
the ideal work, derive an expression for the maximum reduction 
in area per pass for a wire drawing operation for a material with 
a true-stress strain curve of σ=Kεn

Total work = Ideal work + frictional work + redundant work
Total work = Ideal work + 0.2 x Ideal work = 1.2 x Ideal work

Or, Total work of deformation = 1.2 [u x volume]      … (1)

In drawing, external work of deformation = σd x volume … (2)
Equating (1) and (2), we get

σd = 1.2u   or  
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Example Problem
Max reduction occurs when total drawing stress, σd = 
Flow stress of material at die exit, Y
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Drawing - Ex. 1-1
Determine power, and plot σx and p 

along die length.
• Drawing steel rod from φ = 13 mm 

to φ = 12 mm @ 1.5 m/s
• K = 760 MPa, n = 0.19
• µ = 0.1, α = 4o, σxb = 0
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Drawing - Ex. 1-2
• First, we must see if we can do the 

process, the limit is

• RA = 1 - (Da/Db)2 = 0.15 = 15%
• εt = ln{1/(1-RA)}

=  ln {1/(1-0.15)} = 0.16
• B = µ/tanα = 0.1 / tan 4o = 1.43

n
xa Kεσσ == max
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Drawing - Ex. 1-3
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Drawing - Ex. 1-4
• So, equating the equations (with no 

back stress) yields
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Drawing - Ex. 1-5

• Solving gives Da-min = 8.53 mm, so we can 
do the process and proceed with the 
analysis
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Drawing - Ex. 1-6
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Drawing - Ex. 1-7

• σxa = 0.35 x 2τflow

= 0.35 x 446 MPa = 156 MPa
• Fdraw = σxa x Area = 156 x π(12/2)2

= 17.6 kN = 3938 lbf
• Power = Fdraw x speed 
= 17.6 kN x  1.5 m/s = 26.4 kW = 35.4 hp
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Dimensionless pressures (divided by 2τflow)
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Limits on analysis

• Larger die angles
– more redundant work
– σ, p, u will be larger than predicted

DaDb
α
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Redundant work

• ∆ = dm/L
• dm = (Da + Db) / 2
• p = Qr σflow

DaDb
α

L (contact length)
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Redundant work factor (Backofen)
(frictionless)

Qr =
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Temperature rise

D Do

Do/D ≈ 6 kD

(1-r)Q

DIE

v

kw, ρw, cwrQ

WIRE

l
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Temperatures

θ = θo + θs + θf

θo = ambient (room) temperature
θs = temperature rise in the wire 

due to plastic shear energy, us

θf = interface temperature rise due 
to frictional energy, uf
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Specific energies

u = us + uf

u = σxa

us = 2τflow ε
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Specific energies

From the example above (steel rod):
u = σxa = 156 MPa
us = 2τflow ε = 446 * 0.16 

= 71.4 MPa
∴ uf = u - us = 156 – 71.4

= 84.6 MPa
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Shear temperature (θs)
• Since the shear strain is uniform 

in the wire
• and all the shear energy remains 

in the rod as heat
• Then, we can obtain the shear 

temperature in the wire:

ww

s
s c

u
ρ

θ =



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

52

Material properties

• For this material:
– kw = 60 W/m-K
– ρw = 7850 kg/m3

– cw = 500 J/kg-K
– αw = 1.53 x 10-5 m2/s

• For a WC die:
– kD = 42 W/m-K
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Shear temperature (θs)
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Frictional heat (Q)

• v = velocity
• (1-r)Q goes into the die

4

2vDuQ f
π

=

Q represents all heat generated by friction 
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Die and wire temperatures (θ)
• For the die (steady):

• For the wire (moving):
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Q calculation
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Dimensions
• D = 12 mm

– from Do / D ≈ 6
– Do = 72 mm in this example

• l = contact length 
= reduction in radius / sin α
= 0.5 mm / sin 4o = 7.17 mm

dr
l
α
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Die temperature
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Wire temperature
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Heat flow ratio and Temperature

• Equating the previous equations yields:
r = 0.99

• hence 
θ = 156oC = 429 K

Tmelt = 1500oC = 1723 K
So θ/Tmelt = 0.25, cold (below 

recrystallization point
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Temperature in practice

• In practice, r ≈ 1
– all heat goes into wire
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Tube drawing
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Tube Drawing



Prof. Ramesh Singh, Notes by Dr. 
Singh/ Dr. Colton

64

Plane strain / Slab analysis
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Tube Drawing – Special Cases

α
µ

tan
* ≡B

Fixed mandrel- same 
friction at both interface
(plane – tube
is modeled as a
flat section)

Moving mandrel – No friction at interface
of mandrel and tube
(plane and slab)

α
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2 µ
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−≡B

Moving mandrel with friction towards exit, 
takes into account motion between mandrel
and tube (B may be negative) (plane) α
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(slab – circular tube)
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Summary

• Description
• Characteristics
• Mechanical analysis
• Thermal analysis
• Tube drawing
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