1. Mathematica solution for necking,

Necking should occur where $\mathrm{dP}=0$
$\epsilon=\log \left[\left(\mathrm{A}_{0} / \mathrm{A}\right)\right]$
$\sigma=\mathrm{K} \epsilon^{\mathrm{n}}$
$\mathrm{P}=\mathrm{K} \epsilon^{\mathrm{n}} \mathrm{A}_{0} e^{-\epsilon}$

Taking derivative of P with respect to e and equating it to 0 ,
Solve $[D[P, \epsilon]==0, \epsilon]$
$\{\{\in \rightarrow \mathbf{n}\}\}$

Given

$$
\begin{aligned}
& \sigma=k \epsilon^{n} \\
& n=0.3
\end{aligned}
$$

Material $A: K_{A}=450 \mathrm{MPa}, A_{O_{A}}=7 \mathrm{~mm}^{2}$

$$
\begin{aligned}
& B: K_{{ }_{B}^{A}}^{A}=600 \mathrm{MPa}^{\prime}, A_{O_{A}}=7 \mathrm{~mm}^{2}=2.5 \mathrm{~mm}^{2} \\
& C: K_{C}=300 \mathrm{MPa}, A_{O_{C}}=3 \mathrm{~mm}^{2} \\
& D: K_{D}=760 \mathrm{MPa} A_{D}=2 \mathrm{~mm}^{2} \\
& K_{D}=7
\end{aligned}
$$

At maximum tension prior to necking,

$$
\epsilon=n
$$

$$
\begin{aligned}
P= & \sigma_{A} \cdot A_{A_{\text {final }}}+\sigma_{B} \cdot A_{B} \text { final }+\sigma_{c} \cdot A_{c \text { final }} \\
& +\sigma_{d} \cdot A_{d \text { final }}
\end{aligned}
$$

$$
+\sigma_{d} \cdot A_{d} \text { final }
$$

where A final is the area before necking

$$
\begin{array}{ll}
\sigma_{A}=K_{A} \epsilon^{n} & \ln \left(\frac{l_{f}}{l_{i}}\right)=\epsilon=\ln \left(\frac{A_{0}}{A_{\text {final }}}\right) \\
\sigma_{B}=K_{B} \epsilon^{n} & \frac{A_{0}}{\sigma_{C}=K_{c} \epsilon^{n}} \\
\sigma_{d}=k_{d \epsilon^{n}} & \text { A final } \\
& A_{\text {final }}=A_{0} \cdot e^{-\epsilon}
\end{array}
$$

$$
\begin{aligned}
& P= K_{A} \epsilon^{n} \cdot A_{O A} e^{-\epsilon}+K_{B} \epsilon^{n} \cdot A_{O B} e^{-\epsilon} \\
&+K_{C} \epsilon^{n} \cdot A_{O C} e^{-\epsilon}+K_{D} \epsilon^{n} \cdot A_{O D} e^{-\epsilon} \\
& P= \epsilon^{n} \cdot e^{-\epsilon}\left[\begin{array}{l}
K_{A} \cdot A_{O A}+K_{B} \cdot A_{O B}+K_{C} \cdot A_{O C} \\
\\
\left.+K_{D} \cdot A_{O D}\right]
\end{array}\right. \\
& P=\epsilon^{n} \cdot e^{-\epsilon}\left[\begin{array}{r}
450 \times 7+600 \times 2.5+300 \times 3 \\
\\
+760 \times 2] N
\end{array}\right. \\
& P=0.3^{0.3} \cdot e^{-0.3}[450 \times 7+600 \times 2.5+300 \times 3+760 \times 2] \\
&= 3649.78 \mathrm{~N}
\end{aligned}
$$

If n values were different then the necking will start at the strand with lowest n value.
2. The total moment,

$$
M_{t}=\int(\tau d A) r
$$

From Mathematica,
$\int_{r}^{r+t} \int_{0}^{2 \pi r} r r d \theta d r$
$2 \pi r^{2} t \tau+2 \pi r^{2} \tau+2 / 3 \pi t^{3} \tau$
Since t is small, higher orders are ignored
$M_{t}=\int(\tau d A) r=\tau 2 \pi r^{2} t$
$\tau=\frac{M_{t}}{2 \pi r^{2} t}$
Axial_stress,
$\sigma=\frac{F_{z}}{2 \pi r t}$
$\tau=\mathrm{M}_{\mathrm{t}} /\left(2 \pi \mathrm{r}^{2} \mathrm{t}\right)$
$\sigma=\mathrm{F}_{\mathrm{z}} /(2 \pi \mathrm{rt})$
$\sigma 1=\sigma / 2+\sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}$
$\sigma 3=\sigma / 2-\sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}$
$\sigma 1=F_{z} /(4 \pi r t)+\sqrt{\frac{F_{z}^{2}}{16 \pi^{2} r^{2} t^{2}}+\frac{M_{t}^{2}}{4 \pi^{2} r^{4} t^{2}}}$
$\sigma 3=F_{z}(4 \pi r t)-\sqrt{\frac{F_{z}^{2}}{16 \pi^{2} r^{2} t^{2}}+\frac{M_{t}^{2}}{4 \pi^{2} r^{4} t^{2}}}$
$\sigma 2=0$; Plane stress state;

You can find maximum shear stress $=(\sigma 1-\sigma 3) / 2$

All other problems should be relatively straight forward.

