(1)

$$
\begin{aligned}
\mu^{2} \cdot R & =(\Delta h)_{\max } \\
\therefore \Delta h & =\mu_{\min }^{2} \cdot R \\
\Delta h & =1 \mathrm{~mm} \\
R & =100 \mathrm{~mm} \\
\mu_{\min } & =\sqrt{\frac{\Delta h}{R}}=\sqrt{0.01}=0.1
\end{aligned}
$$

(b) $\alpha=\tan ^{-1}(0.1)$

$$
\alpha=5.71^{\circ} \text { or } \alpha=0.1 \mathrm{rad}
$$

Ue Radians every where.
(C)

$$
\begin{aligned}
H & =\sqrt[2]{h_{f}} \tan ^{-1}\left(\frac{\sqrt{R}}{\sqrt{h_{f}}} \cdot \phi\right) \\
H_{n} & =\frac{1}{2}\left(h_{0}-\frac{1}{\mu} \ln \left(\frac{h_{0}}{h_{f}}\right)\right) \\
H_{0} & =2 \sqrt{\frac{R}{h_{f}}} \cdot \tan ^{-1}\left(\sqrt{\frac{R}{h_{f}}} \cdot \alpha\right) \\
H_{0} & =2 \sqrt{\frac{100}{4}} \tan ^{-1}(-0.1 \\
H_{0} & =2 \times 5 \times 0.436=4.63
\end{aligned}
$$

$$
\begin{aligned}
H_{n} & =\frac{1}{2}\left(H_{0}-\frac{1}{\mu} \ln \left(\frac{h_{0}}{h_{f}}\right)\right) \\
H_{n} & =\frac{1}{2}\left(4.63-\frac{1}{0.1} \ln \left(\frac{5}{4}\right)\right) \\
H_{n} & =\frac{1}{2}(4.13-2.23) \\
& =1.199 \quad \tan \left(\sqrt{\frac{h_{1}}{R}} \cdot \frac{H_{n}}{2}\right) \\
\phi_{n} & =\sqrt{h_{f}} \tan \left(\frac{1}{5} \times 1.199\right. \\
\phi_{n} & =\frac{1}{5} \tan \Rightarrow 1.379^{\circ} \\
\phi_{n} & =.024 \mathrm{rad} \Rightarrow
\end{aligned}
$$

(2) a) $\Delta h_{\text {max }}=\frac{\mu^{2} R}{F e c s i b l e}=375 \times(0.2)^{2} \simeq 15 \mathrm{~mm}$
(b)

$$
\begin{align*}
& \epsilon=\ln \left(\frac{h_{i}}{h_{f}}\right) \\
& =\ln \left(\frac{75}{60}\right)=0.223 \\
& \overline{y_{f}}=\frac{K \epsilon^{n}}{n+1}=\frac{800 \times(0.223)^{0.14}}{1.14}=568.83 \mathrm{MPa} \\
& \overline{y_{f}} 1=1.15 \times 568.83=654.16 \mathrm{MPa} \\
& L=\sqrt{R \cdot \Delta h} \\
& =\sqrt{375(75-60)} \mathrm{mm} \\
& =75 \mathrm{~mm} \\
& \text { have }=\frac{60+75}{2}=67.5 \mathrm{~mm} \\
& F=\overline{Y_{f}} \times L \times \omega\left(1+\frac{\mu L}{2 \times h a r}\right) \\
& F=654.16 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \times 75 \mathrm{~mm} \times 250 \mathrm{~mm} x \\
& \left(1+\frac{0.2 \times 75 \mathrm{~mm}}{2 \times 67.5 \mathrm{mn}}\right) \\
& F=13.62 \times 10^{6} \mathrm{~N} \\
& T=F \times 0.4 \mathrm{~L}=408.85 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m} \\
& \text { Power }=T \times \infty \tag{3}\\
& \omega=2 N \pi / 60
\end{align*}
$$

$$
\begin{aligned}
\text { Power } & =408.85 \times 10^{3} \frac{\times 2 \times \pi \times 100}{60}=4.281 \times 10^{6} \mathrm{~W} \\
& =4.281 \mathrm{MW}
\end{aligned}
$$

\therefore The process is feasible.
(6)
(3)

For iced deformation,

$$
\begin{aligned}
& \sigma_{d}=u=\int_{0}^{\epsilon} k t^{n} \cdot d \epsilon=\frac{k \epsilon^{n}}{n+1} \cdot \epsilon \\
& \frac{k \epsilon^{n}}{n+1} \Rightarrow \text { Not Valid }
\end{aligned}
$$

This material is perfectly plastic

$$
\begin{aligned}
\therefore Y & =30,000 \\
\sigma d & =u=\int_{0}^{\sigma} Y \cdot d \epsilon \quad \epsilon=\ln \left(\frac{A_{0}}{A_{f}}\right)=2 \ln \left(\frac{D_{0}}{7}\right. \\
\sigma d & =30,000(\epsilon) \\
& =30,000 \times 2 \ln \left(\frac{0.1}{0.07}\right) \\
& =2 \times 10700 \cdot 24 \mathrm{psi}=21,400 \mathrm{psi} \\
F & =\sigma d \cdot A_{f} \\
F & =2 \times 10,700 \cdot \times \frac{\pi}{4} \cdot d f^{2} \\
& =2 \times 10,700.24 \times \frac{\pi}{\pi} \times(0.07)^{2}=41.17 \mathrm{lb} \\
& =21,400 \times \frac{3.144}{4} \times
\end{aligned}
$$

$$
\text { For friction, } \bar{\sigma}_{d}=\overline{Y_{f}}\left(1+\frac{t \tan \alpha}{\mu}\right)\left(1-\left(\frac{A_{f}}{A_{0}}\right)^{\mu \cot \alpha}\right]
$$

$$
\begin{aligned}
\sigma_{d} & =\gamma\left(1+\frac{\tan \alpha}{\mu}\right)\left(1-\left(\frac{A_{f}}{A_{0}}\right)^{\mu \cot \alpha}\right] \\
& =30,000\left(1+\frac{\tan 15^{\circ}}{0.1}\right)\left(1-\left(\frac{0.07^{2}}{0.1^{2}}\right)^{0.1 \cdot \cot 15^{\circ}}\right) \\
\sigma_{d} & =25,791 \mathrm{psi} \\
F & =\sigma_{d} . A_{f} \\
& =25.791 \times \frac{\pi}{4} \times(0.07)^{2}=99.25
\end{aligned}
$$

The friction uncross the drawing force.

Extursion forca is givmby

$$
P_{x}=\bar{Y}_{f}\left(3.414 \ln \left(\frac{D_{1}}{D_{2}}\right)+\frac{2 x}{D_{1}}\right)
$$

Given

$$
L=2 \mathrm{~m}
$$

$$
k=965
$$

$$
D_{1}=D_{\Phi}=75 \mathrm{~mm}
$$

$$
n=0.19
$$

$$
\begin{aligned}
& \bar{Y}_{f}=\frac{K \epsilon_{1}^{n}}{n+1} \quad D_{2}=D_{f}=20 \mathrm{~mm} \\
& \epsilon=\ln \left(\frac{A_{0}}{A_{f}}\right)=2 \ln \left(\frac{D_{0}}{D_{f}}\right)=2 \ln \left(\frac{75}{20}\right) \\
& \epsilon=2.6435 \\
& \bar{y}_{f}=\frac{965 \times(2.635)^{0.18}}{1.18}=973.94 \mathrm{MPa}
\end{aligned}
$$

$$
\begin{aligned}
x & =2-.075 \\
& =1.972 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
P_{x} & =973.94 \times 10^{6} \times\left[3.414 \ln \left(\frac{75}{20}\right)+\frac{2 \times 1.972}{75 \times 10^{-3}}\right] \\
& =55.62 \times 10^{9} \simeq 55.62 \mathrm{GPa}
\end{aligned}
$$

$$
\begin{aligned}
& F=P \times \text { Area }_{\text {inctial }}=P \cdot A_{0} \\
&=55.6 \times 10^{9} \times \frac{\pi}{4}(.075 \\
&)^{2} \\
&=246 \mathrm{MN} \\
& \text { Powrs }=F \times V=246 \times 10^{6} \times 1.5=368 \mathrm{MW}
\end{aligned}
$$

(5) If the die weans 10%

$$
\begin{aligned}
& D_{f}=22 \mathrm{~mm} \\
& E=2 \ln \left(\frac{22}{75}\right)=2.45 \\
& Y_{f}^{\prime}=\frac{965 \times(2.45)^{0.19}}{1.19}=961.4 \\
& X=2000-\frac{75-22}{2}=1973.50 \\
& P_{\lambda}=961.4\left[\frac{3.414 \ln \left(\frac{75}{22}\right)+2 \times 1973.5}{75}\right] \\
& =54.6 \mathrm{Gla}] \\
& F=54.6 \times 10^{9} \times\left(\frac{\pi .0 .075^{2}}{}=241 \mathrm{MN}\right. \\
& \left.P_{0}\right) \mathrm{wn}=241 \times 10^{67} \times 1.5=362 \mathrm{MW}
\end{aligned}
$$

So manimum $P_{\text {ower is }}$ ieduced.

Exam 2 solution:
(2)

Take a small angl α_{i}.
$\mu p \cdot \Delta l \cos \alpha_{i} \cdot \omega \simeq$ Friction force fulling the sheet in

$$
p \cdot \Delta l \sin \alpha_{i} \cdot \omega=\text { pressure component fulling }
$$

the sheet ont,
For unaided bite, ie., rolling whtront any extusind force,

$$
\begin{aligned}
& \mu p \Delta l \cos \alpha_{i} \cdot \omega \geqslant p \cdot \Delta l \sin \alpha_{i} \cdot \omega \\
& \mu \geqslant \tan \alpha_{i} \\
& \mu_{m i n}=\tan \alpha_{i} \\
& \alpha_{i}=\frac{\operatorname{arc}}{\text { radius }}
\end{aligned}
$$

For s mall α_{i}

$$
\begin{aligned}
& \alpha_{i} \curvearrowleft \tan \alpha_{i} \\
&-t \cos \alpha_{i}=\alpha_{i}=\frac{L}{R}=\frac{\sqrt{R \cdot \Delta h}}{R}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \mu=\frac{J \overline{R \cdot \Delta h}}{R} \\
& \mu^{2}=\frac{R \cdot \Delta h}{R^{2} R} \\
& \mu^{2} R=\Delta h \\
& \mu^{2} R=\left.\Delta h\right|_{\max } \\
& \text { Power }=T \cdot \omega \\
& T=F \cdot L / 2 \\
& \omega=\frac{2 \cdot N \cdot \pi}{60} \\
& P_{\text {ow }}=\frac{F \cdot L}{2 \times 60} \times 2 \cdot N \cdot \pi \\
& \text { Given Power }=100 \mathrm{~kW} \\
& F=1000 \mathrm{KN} \\
& 10 \quad N=60 \mathrm{ReM} \\
& 1001 \times 1000=\frac{1000 \times 1000 \times L \times 60 \times 2 \pi}{120} \\
& L=\frac{1}{10 \pi}=.0318 \mathrm{~m}=31.8 \mathrm{~mm} \\
& \sqrt{R \cdot \Delta h}=.0318 \text { (i) } \\
& \mu^{2} R=\Delta h-\text { (ii) } \\
& \sqrt{\mu^{2} R^{2}}=.0318 \quad \& \mu=0.1 \\
& \Rightarrow \mu R=10318 \therefore R=0.318 \mathrm{~m}=318 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& R=0.318 \\
& \Delta h=\mu^{2} R \\
& \Delta h=(0.1)^{2} \times 0.318=0.00318=3.18 \mathrm{~mm} \\
& h_{i}-h_{f}=3.18 \\
& h_{f}=4.0-3.18=0.82 \mathrm{~mm} \\
& \frac{a}{F}=\bar{Y}_{f}^{\prime}\left(1+\frac{\mu L}{2 h_{a v e}}\right) L \times \omega
\end{aligned}
$$

$\sigma \mathrm{f}=\mathrm{Yf}=207+414 \varepsilon$; Use the value of strain, $\varepsilon=1.58$
Yf_aver $=(207+861) / 2=534.06 \mathrm{MPa}$
Yf_aver" $=1.15 \mathrm{Yf}$ _aver and maximum value of Force $=10^{\wedge} 6$. The only unknown is width, which can be calculated

