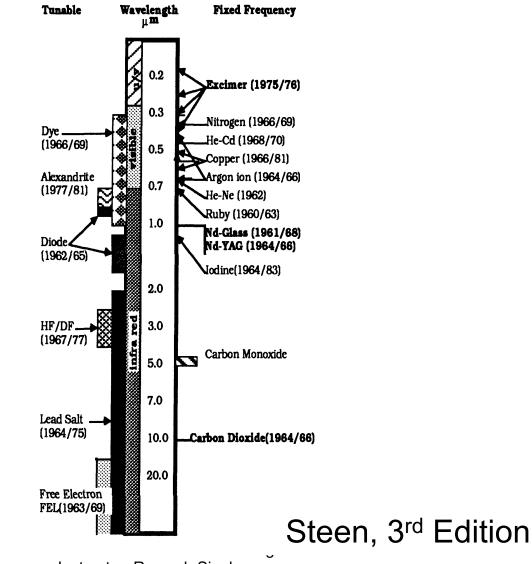
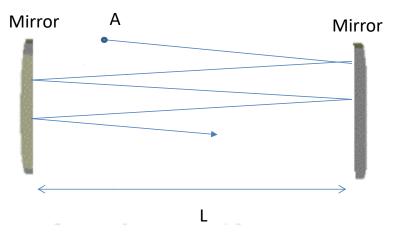
Introduction to Laser Material Processing

Outline


- Brief History
- Design of Laser cavity
- Stability
- Types of Lasers

Laser History

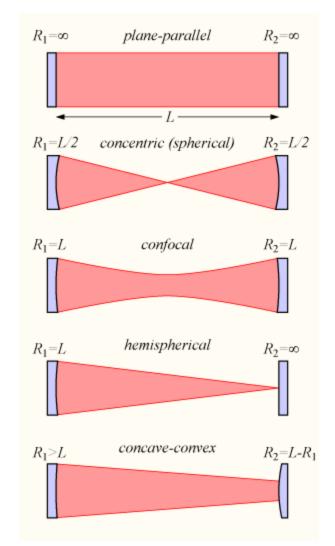
- 1917 Albert Einstein: Theoretical prediction of stimulated emission
- 1946 G. Meyer-Schwickerather: first eye surgery with light
- 1950 Arthur Schawlow and Charles Townes: Emitted photons may be in the visible range
- 1954 N.G. Basow, A.M. Prochorow, and C. Townes: ammonia maser
- 1960 Theodore Maiman: first laser (ruby laser)
- 1964 Basow, Prochorow, Townes (Nobel prize): quantum electronics
- 1970 Arthur Ashkin: laser tweezers
- 1971 Dénes Gábor (Nobel prize): holography
- 1997 S. Chu, W.D. Phillips and C. Cohen-Tanoudji (Nobel prize): Atom cooling with laser



Instructor: Ramesh Singh

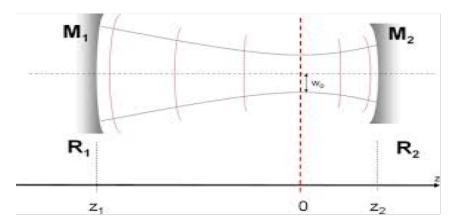
Optical Cavity Design: Frequency and length

- Total electric field, E, at any point will be determined by the interference of the E fields from the various reflected waves
- Assuming the phase of the E field is same after traversing a distance 2L


$$\begin{split} E(x,t) &= E_0 \cos(kx - \omega t) \\ E(x+2L,t) &= E(x,t) \\ k2L &= m2\pi \\ 2L &= m\lambda \\ v_m &= \frac{c/n}{\lambda} = m \frac{c}{2nL} \end{split}$$
 The output frequency is function of Refractive index and length

Optical Cavity Design

- Basic designs components
 - Totally reflecting mirror
 - Partially reflecting mirror
 - Mirror materials
 - ZnSe, GaAs and CdTe for CO₂ lasers
 - BK7 fused Silica
 - Key parameters
 - R1, R2, L
 - Multiple configurations



Stability of Laser Cavity

- Laser cavity could have two configurations:
 - Stable
 - Unstable
 - If the cavity is unstable, the beam size will grow without limit, eventually growing larger than the size of the cavity mirrors and being lost

Stability of Optical Cavity

A general spherical resonator formed by two mirrors M_1 and M_2 separated by a distance L= z_2 - z_1 having radii of curvatures, R_1 and R_2 , respectively

$$R(z) = z \left(1 + \frac{\pi^2 w_0^4}{\lambda^2 z^2} \right) = z + \frac{K}{z} \qquad \mathsf{K} = \frac{\pi^2 w_0^4}{\lambda^2}$$

If the beam waist is located at z=0, the beam size of the Gaussian beam at plane z, w(z), is given by:

$$w(z) = w_0 \left(1 + \frac{\lambda^2 z^2}{\pi^2 w_0^4} \right)^{0.5}$$

Stability Analysis

$$\begin{aligned} z_1 + \frac{K}{z_1} &= -R_1; \ z_2 + \frac{K}{z_2} = R_2 \\ z_2 - z_1 &= L \\ z_2 &= \frac{L(L - R_1)}{(2L - R_1 - R_2)} \\ g_1 &= 1 - \frac{L}{R_1}; \ g_2 = 1 - \frac{L}{R_2} \\ z_2 &= \frac{L(1 - g_2)g_1}{(g_1 + g_2 - 2g_1g_2)}; \ z_1 = -\frac{L(1 - g_1)g_2}{(g_1 + g_2 - 2g_1g_2)} \\ K &= \frac{L^2(1 - g_1g_2)g_1g_2}{(g_1 + g_2 - 2g_1g_2)^2} \end{aligned}$$

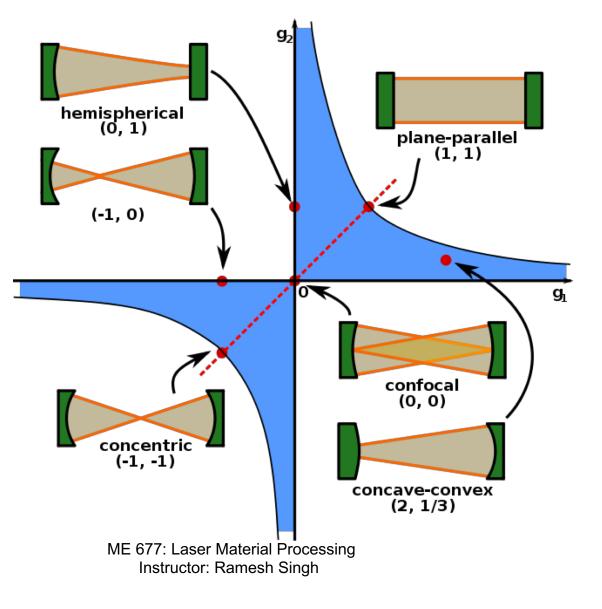
Stability Analysis

$$w^{2}(z_{1}) = \frac{\lambda L}{\pi} \left(\frac{g_{2}}{g_{1}(1-g_{1}g_{2})}\right)^{\frac{1}{2}}$$
$$w^{2}(z_{2}) = \frac{\lambda L}{\pi} \left(\frac{g_{1}}{g_{2}(1-g_{1}g_{2})}\right)^{\frac{1}{2}}$$

- Above equation gives
- g1.g2=1 or g1.g2=0 are unfeasible and analysis breaks down.

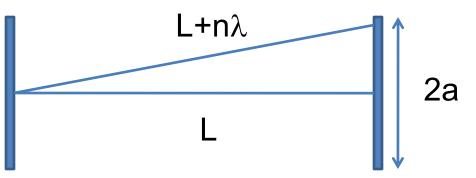
Stability analysis for Optical Cavity

1


• Ray transfer matrix analysis

$$0 \leq \left(1 - \frac{L}{R_1}\right) \left(1 - \frac{L}{R_2}\right) \leq g_1 = \left(1 - \frac{L}{R_1}\right)$$
$$g_2 = \left(1 - \frac{L}{R_2}\right)$$

Plot of stability


• $0 \le g1.g2 \le 1$

Cavity Length

- The cavity length/width of aperture determines number of off-axis modes between the mirrors
 - L = cavity length
 - a = radius of aperture
 - λ = wavelength of laser radiation
 - n = number of fringes or off axis modes

Fresnel Number

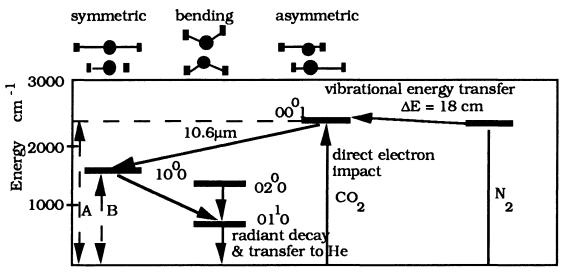
• Using Pythagoras Theorem and ignoring higher order terms,

$$a^{2} + L^{2} = (L + n\lambda)^{2}$$
$$a^{2} = 2Ln\lambda$$
$$n = \frac{a^{2}}{2L\lambda}$$

- n = Fresnel Number/2
- Total number of fringes observed if the back mirror is uniformly illuminated

Fresnel No. (Contd.)

- Low Fresnel number gives low-order mode
- Off axis oscillations are lost in diffraction
- A high Fresnel number cavity can be controlled by using mirror design
 - Flatter of Curved?
- Off axis modes define Transverse Electromagnetic Mode


Types of Lasers

- Most of the lasers can be classified into following categories
 - Gas lasers (CO₂, He-Ne, Excimer)
 - Solid state lasers (Ruby, Nd:YAG, Fiber
 - Diode lasers
 - Dye lasers
 - Ultra-short pulsed lasers

CO₂ Lasers

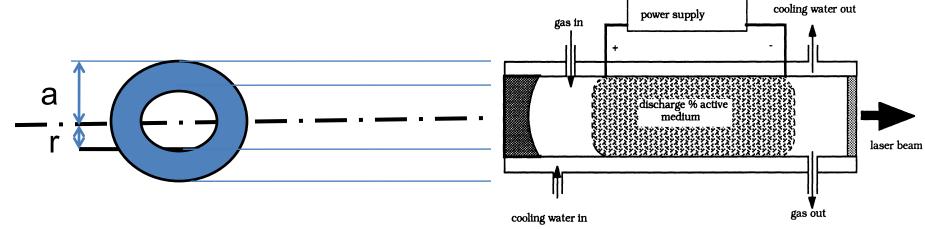
- The traveling photon formed due to energy loss or collision:
 - It can take molecule 10°0 to 00°1
 - Get diffracted
 - Strike the excited molecule at higher energy
- The molecule at higher energy will emit photon of identical wavelength in same phase and direction

KrF Excimer Laser at IIT Bombay

- No oscillator
- Very High Powers (0.2 J/pulse on 20 ns pulse width)
- Expensive

Fiber Laser at IIT Bombay

- 100 W CW
- Frequency 100 KHz
- Pulse width of the order of μs


3 kW Fiber Laser @ IITB

Industrial Lasers-Slow Flow

- Slow Flow Lasers
 - Cooling through walls of the cavity
- Analysis of cooling in slow flow lasers
 - Heat generated/length = $Q\pi r^2$
 - Heat removed/length = $-2\pi rk(dT/dr)$
 - Q= rate of volumetric heat flow

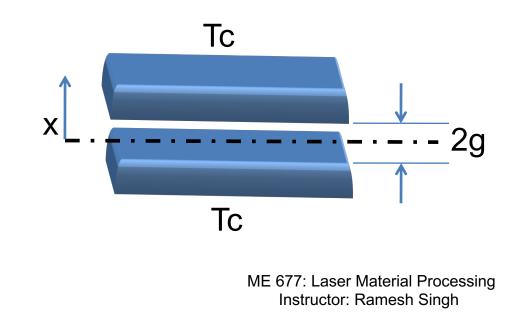
Analysis for Slow Flow Lasers

$$\int_{T}^{T_{c}} dT = \int_{r}^{a} -\frac{Qr}{2k} dr$$

$$Max Temp @r = 0, T \max = Taxis$$

$$Taxis = \frac{Qa^{2}}{4k} + Tc$$

$$Volumetric _ Heat,$$


$$\eta Q = \frac{P}{\pi a^{2}L}$$

$$P = 4\pi\eta k L(T \max - Tc)$$

Slow Flow-Waveguide Cooling

- A variation of conduction route
 - Thin slit between electrodes is the laser cavity
 - Laser is wave guided within the narrow passage
- Analysis of cooling in slow flow lasers
 - Heat generated in cross-section A, and thickness, x = QAx
 - Heat removed by conduction = -kA(dT/dx)

Waveguide Analysis

$$\int_{T}^{T_{c}} dT = \int_{x}^{g} -\frac{Qx}{k} dx$$

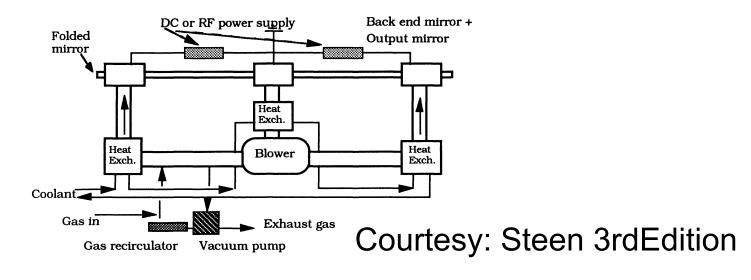
$$MaxTemp @ x = 0, T \max = Taxis$$

$$Taxis = \frac{Qg^{2}}{2k} + Tc$$

$$Volumetric_Heat,$$

$$\eta Q = \frac{P}{A2g}$$

$$P = 4\frac{A}{g}\eta k(T \max - Tc)$$


Slow-Flow Lasers

- Cooling efficiency governs the output power
- 50W/m -80 W/m output power
- Good mode for rod systems
- Elliptical profile and arrayed beams for wave guide

Fast Axial Flow Lasers

- Fast axial flow lasers
 - Gas flow rates 300-500 m/s in discharge zone
 - Cavity length is of low Fresnel number
 - Good for high power compact lasers
 - Cooling is done by the flowing gas during its time of interaction in discharge zone

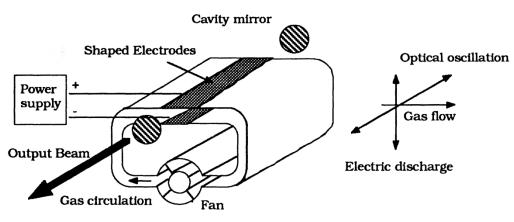
Analysis – Fast Axial Flow

 $\delta \mathbf{Q} = -Q.dt$

where Q = Volumetric heat (J/m³)

Q = rate of volumetric heat generation (W / m^3)

$$\int_{T}^{T_{c}} \rho C dT = -\int_{x}^{L} \frac{Q dx}{V}$$
$$\eta Q = \frac{P}{AL}$$
$$P = \eta \rho AVC(T \max - Tc)$$


Fast Axial Flow Lasers

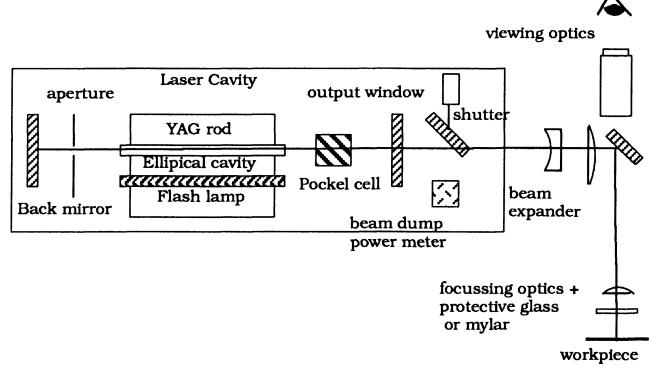
- Power is proportional to area and velocity
- Mode number $a^2/L\lambda \sim A/L\lambda$ is typically very high and difficult to focus finely
- Very high power generation
 - 650 W/m

Transverse Flow Lasers

• For very high powers lasers are convectively cooled in transverse direction

- Asymmetric beam power due to heating of the gas while traversing the lasing space
- Asymmetric beam power is obtained
- UTRC 25 KW laser, MLI laser

UTRC Laser

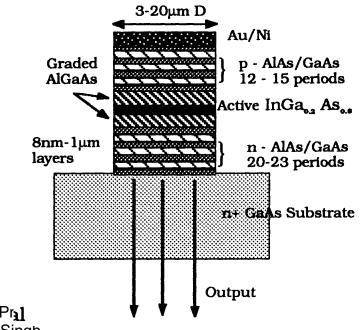


Solid State Lasers

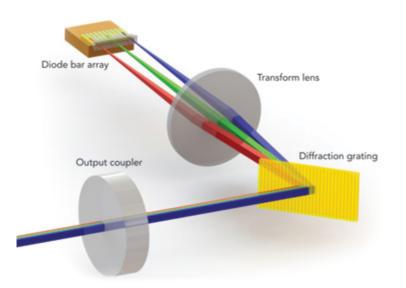
- Solid state lasers have three key design features
 - Pumping power for lasing
 - Cooling
 - Avoiding distortion or breakage due to thermal load
- Nd-YAG
 - Pumped by flash lamp or diode
 - Nd³⁺ ions in YAG rod
 - Q switching for pulse rates (0-50 kHz)
 - Spoils lasing oscillation in controlled way
 - Mechanical chopper, bleachable dye, optoelectric shutter, acousto-optic switch

Nd-YAG Construction

- Nd-YAG laser can be passed through barium borate (BBO) or lithium niobate (LBO) crystals can yield 530 nm
- This process is called frequency doubling

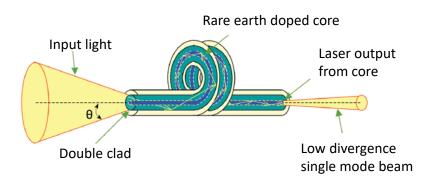

Diode Pumped Solid State Lasers

- Tiny fraction of the power is absorbed by Nd³⁺
- Waste heat causes distortion
- Diode lasers have high wall plug efficiency and good coupling with Nd³⁺


Diode Lasers

- Similar to LED
- Difference in Fermi energy in conduction and valence band at p-n junction
- Photons can be emitted
- Stacked configuration

High Power Diode Lasers



Diode Pumped Fiber Lasers

- A laser in which the active gain medium is an optical fiber doped with rare-earth elements
 - Erbium, ytterbium, neodymium, dysprosium, praseodymium, and thulium
- Doped fiber amplifiers provide light amplification without lasing
- Pumped by diode lasers

Fiber Laser

Advantages

- High beam quality
- High wall plug efficiency
- Portability
- Long life

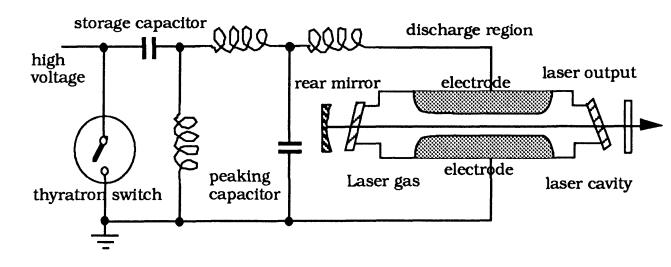

Wavelengths of Solid State Lasers

Table 1.4	Wavelengths accessible with common solid state lasers								
Laser Type	Wavelength (µm)								
	0.1	0.2	0.3	0.4	0.6	0.8	1.0	2.0	
Holmium-YAG							*	*	
Erbium-Glass					*		*		
Nd-YAP		*	*	*			*		
Nd-YAG		***	*	* **	*		* *		
Nd-YLF		* *	*	*			*		
Nd-Silica Glass		*	*	*			*		
Nd-Phosphate Glass		*	*	*			*		
Ti-Sapphire			*	****	**	****	*		
Cr-Alexandrite			***	*	*	*			
Cr-Ruby			*		*				
* approximate region of principle wavelengths.									

Functioning of Excimer Laser

- Excitation by 35-50 kv pulse
- Current density up to 1 kA/cm²
- Optics
 - Fused silica,
- Gas 4-5 MPa

Excimer Laser Reactions

Pumping (Mirowave or gas discharge is used), e + Kr \rightarrow Kr+ + e + e Positive inert gas ion formation,

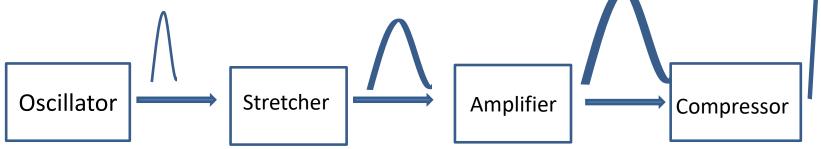
 $e + Kr \rightarrow Kr^* + e$ Inert gas in metastable condition,

 $e + F2 \rightarrow F-+ F+$ Negative halogen ion formation,

Kr^{*} + F-+ M → KrF^{*} + M KrF production, Kr^{*} + F2 → KrF^{*} + F

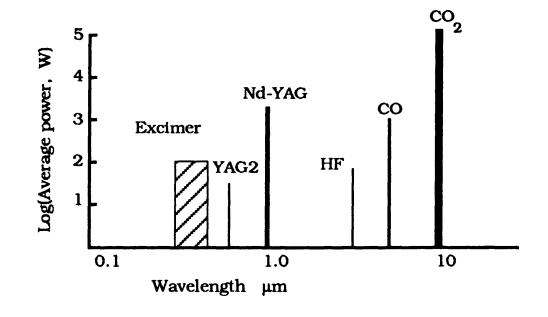
Stimulated emission,

KrF* + hv \rightarrow Kr + F + 2hv (248 nm) -laser emission



Ultra Short Pulsed Lasers

- Ultrashort Pulse Lasers: Most of the lasers operate in a CW mode or pulsed mode of the order of 100 picoseconds by either q-switching or mode locking.
- Ultrashort pulsed are lasers which have femtosecond duration pulses. This ultrashort pulse duration enables very high peak powers (~10¹⁵ W/cm²).
- Many methods have been developed for creating ultrashort pulse laser beams. However, one of the basic methods is chirped pulse amplification.
 - It is known that the spectrum of the laser beam is inversely proportional to the pulse duration. Hence, a laser gain medium with broad continuous spectrum is essential for ultrashort pulse.
 - The active media that can support femtosecond lasers are Ti-Sapphire (6 fs), Nd:Glass (100 fs), Yb:Glass, Yb:YAG, Cr:YAG, and dye.
 - The generation starts from mode locking which results in a frequency of 100 MHz.



Chirped Pulse Amplification

Comparison Between Lasers - Power

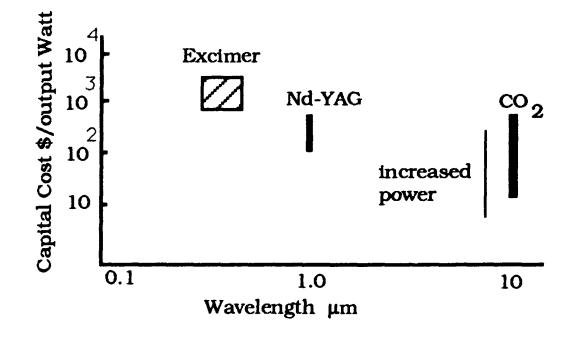
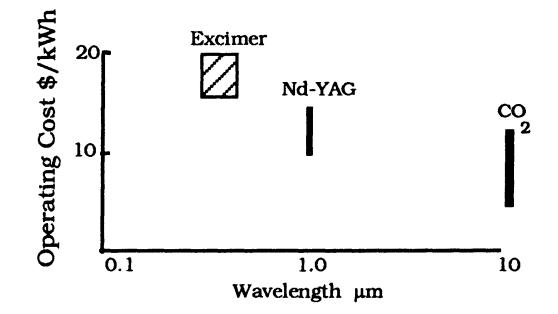

Efficiency-1

Table 1.2	Efficiency of main types of industrial lasers				
Туре	Wavelength µm	Wall Plug Efficiency %			
Carbon Dioxide	10.6	12			
Carbon Monoxide	5.4	8			
Nd-YAG	1.06	0.4			
Nd-Glass	1.06	0.1			
Excimer (KrF)	0.249	2			

Capital Cost

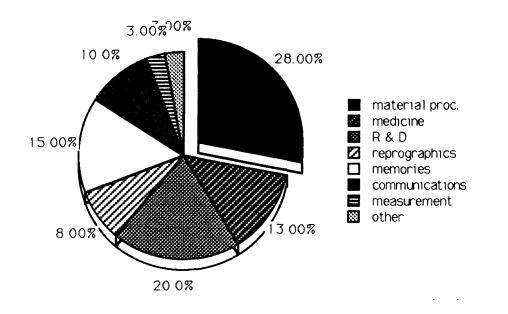
• 1987 data



ME 677: Laser Material Processing Instructor: Ramesh Singh

Operating Cost

• 1987 data


Comparison with Fiber

Properties	Fiber	Nd:YAG	CO ₂	Disc
	Laser			
Wall Plug	30%	~ 5%	~10%	15%
Efficiency				
Output Powers	to 50kW	to 6kW	to	to
			20Kw	4kW
BPP (4/5 kW)	< 2.5	25	6	8
Life	100,000	10,000	N.A.	10,000
Cooling	Air/water	water	water	water
Floor Space (4/5	< 1 sq. m	6 sq. m	3 sq. m	4 sq.
kW)	_	_		m
Operating Cost	\$21.31	\$38.33	\$24.27	\$35.43
Maintenance	Not	Often	Require	Often
	Required		d	

Properties of various lasers (courtesy IPG Photonics)

Market Share

Laser-Summary

- Types of Lasers
- Optical cavity Design
- Cooling
- Comparative study

