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Laser Optics-II
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Outline

• Absorption
• Modes
• Irradiance
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Reflectivity/Absorption

• Absorption coefficient will vary with the same effects 
as the reflectivity 

• For opaque materials:
– reflectivity = 1 - absorptivity

• For transparent materials:
– reflectivity =1- (transmissivity + absorptivity)
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Reflectivity
• In metals the radiation is predominantly absorbed by free 

electrons in an “electron gas”
• Free electrons are free to oscillate and reradiate without 

disturbing the solid atomic structure
• The reflectivity increases from visible to high wavelength
• As a wavefront arrives at a surface all the free electrons in the 

surface vibrate in phase generating an electric field 180° out 
of phase with the incoming beam

• The sum of this field will be a beam whose angle of reflection 
equals the angle of incidence
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Effect of Wavelength
• Reflectivity is a function of the refractive index, 

n, and the extinction coefficient, k 

• At shorter wavelengths, the more energetic 
photons can be absorbed by a greater number 
of bound electrons
– Reflectivity decreases and absorptivity increases
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Reflectivity of Metals

6



ME 677: Laser Material Processing
Instructor: Ramesh Singh

Reflectivity of Non-metals
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Effect of Temperature

• Temperature increase results in 
increase in phonon population 
and phonon-electron energy 
exchanges
– Reflectivity decreases
– Absorption increases
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Surface Roughness

• Surface Roughness has a large effect on absorption 
due to:
– The multiple reflections in the undulations
– Also some "stimulated absorption" due to beam 

interference with sideways reflected 
• If roughness is less than the beam wavelength, the 

light will perceive the surface as flat 
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Case Study-1045 steel
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Angle of Incidence
• At certain angles the surface electrons may be constrained 

from vibrating since to do so would involve leaving the 
surface. This they would be unable to do without absorbing 
the photon

• The electric vector is in the plane of incidence, the vibration 
of the electron is inclined to interfere with the surface and 
absorption is thus high 
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Refraction

• On transmission the ray undergoes refraction 
described by Snell’s law: 
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Refraction
• Scattered intensity  is a function of 1 /l4 Rayleigh 

Scattering Law. 
• The normal form of a dispersion curve (refractive 

index vs wavelength) is known as a Cauchy Equation: 
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Beam Mode
• Two spatial modes describe the beam

– Longitudinal 
– Transverse

• Essentially independent of each other
– Transverse dimension in a resonator is normally considerably smaller 

than the longitudinal
• The standing wave condition will be amplified, i.e., there can be 

only integer number of half wavelengths in the cavity, 
– D= q. λ/2 or  qλ=2D
– q is a large integer referring to the number of nodes in the longitudinal 

standing, D is the cavity length (mirror separation), and λ is the 
wavelength. 

• The longitudinal mode number is large in industrial lasers and is 
normally ignored on beam characteristics and performance. 

• The transverse electromagnetic mode (TEM) is more important.
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Longitudinal Mode

• Longitudinal Mode (integral multiples of l/2)

l=2D, l=D
D
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Longitudnal Mode
• The frequency of the  axial mode of the cavity,

! = #$
2&

• If λ is replaced by '(, where c is the speed of light and ν is the 
frequency, the frequency separation between two adjacent nodes 
∆ν between adjacent modes (∆q =1) is given by,

Δ! = '
*+

• The axial modes of the laser cavity consists of a large number of 
frequencies spaced apart by '*+ as illustrated. However, the given 
mode can oscillate if the gain exceeds the losses at that frequency
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Spectral lines due to axial mode

(a)

(b)
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Transverse Mode
• TEM describes the variation in beam intensity with position in 

a plane perpendicular to the direction of beam propagation
– It characterizes the intensity maxima in the beam 

• The TEM is determined by: 
– The geometry of the cavity
– Alignment and spacing of internal cavity optics
– Gain distribution and propagation properties of the active medium
– Presence of apertures in the resonator
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TEM
• Rectangular Modes

– X axis
– Y axis 

• Circular  Modes TEMpl
– Radial, p
– Angular, l
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Intensity Plots

a.TEM00; b. TEM 10; c. TEM01*
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Propagation…
• Generic equation for propagation:

! ", $, %

= !'()'
2 "

+(%) )(
2 $

+(%)
+

+(%) .
/ 01231

41 ./5 67/(82'2() 9:;<= 7
7> ./5

6?1
@A(7)

Equations for Hermite Gaussian beam in (x-y coordinates) at beam waist (z=0)

2 2

2

0

0

2 2( , )

_ _
min _

_ tan _ _
_ tan _ _
min _ _

x y
w

m n
x yE x y E H H e
w w

where
E Electric field amplitude
E No al amplitude
x x dis ce from axis
y y dis ce from axis
w No al beam radius

æ ö+
-ç ÷ç ÷
è ø

æ ö æ ö
= ç ÷ ç ÷ç ÷ ç ÷

è ø è ø

=
=
=
=
=

21



ME 677: Laser Material Processing
Instructor: Ramesh Singh

Propagation…
• Hn(x) is a Hermite polynomial 
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Gaussian Beam

• Gaussian function goes out to infinity
• Low powered lasers mimic the TEM00

• TEM00 beams can be focused to smallest spot 
as compared to any other distribution
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Beam Properties
• The point where irradiance drops to 1/e2 of 

the peak
• The radius containing 1- 1/e2 power
• A two dimensional plot, the x value of which 

95% of the plot area is contained between x 
and –x.
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Gaussian Distribution

For different gaussian beams:
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Equations for a generic intensity
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Intensity I(x, y, z) propagating along z axis. The second moments in x and y 
axes at a given location, z, can be defined as 
!"# $ = ∬ "'"̅ ) * ",,,- .".,

∬ * ",,,- .".,

!,# $ = ∬ ,'/, ) * ",,,- .".,
∬ * ",,,- .".,

The centroids, 0̅ and /1 are defined by, 
0̅ = ∬ " * ",,,- .".,

∬ * ",,,- .".,

/1 = ∬ , * ",,,- .".,
∬ * ",,,- .".,

The beam dimensions (widths) in x and y are given by,
23" = 4 !"($)
23, = 4 !,($)
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Examples
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Propagation of laser beam  
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For a monochromatic beam propagating in z the complex 
electric field amplitude 

where E0 is the peak amplitude; w is beam waste radius; 
k = 2π/l ; ZR is the Rayleigh length; Rz is the radius of curvature 
of the wave front
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The variation of beam radius in 
propagation
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Propagation of Laser Beams
• A laser beam propagating in space (lower case for TEM00 and upper case 

for real beams)
– Beam waist or minimum diameter, d0 /D0 

– Beam  waist diameter, dz/Dz at a location z from the waist
– Beam waist or minimum radius, w0 /W0 

– Beam  waist radius, wz/Wz at a location z from the waist
– q/Q = Full-angle beam divergence
– l = Wavelength of light

Q
BEAM  WAIST DIAMTER, DZ

Q

30



ME 677: Laser Material Processing
Instructor: Ramesh Singh

Propagation of Ideal Beam
• For a TEM00 beam, the diameter dz for any distance z form the 

waist is a hyperboloid
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Real Beam
• Real beams can be defined in terms of TEM00

• It can be postulated a fictitious “embedded Gaussian beam” 
having a smaller dia d exists in the real beam;     D=M.d , 
where M>1
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Focused Beam 
Calculations
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Final Calculation
• Once D02 is calculated, Q2 could be found

• Depth of focus where focal spot size changes by ±5%.
• Approximate solution for focused  beam diameter if lens is 

placed at z from the beam waist

If unfocused beam diameter at z, is Dz.
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Laser Optics Setup at IITB

Indian Patent Application No 
442/MUM/2011 Filed on 17 
February 2011

Method and device for 
generating laser beam of 
variable intensity distribution 
and variable spot size 
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Compact Focusing
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The magnifying lens can be selected for a given magnification(m) and length 
(l=u+v). 
! = #

$
% + ' = (
)
# +

)
$ =

)
*

Solving the above set of equations, the focal length of magnifying lens (a 
biconvex lens) can be determined in terms of  length(l) and magnification(m), 

+ = ,-
,.) /
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Aberrations

• Spherical Aberration
• Thermal Distortion
• Astigmatism
• Damage
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Spherical Aberration

• There are two reasons why a lens will not 
focus to a theoretical point
– Diffraction limited problem 
– Spherical lens is not a perfect shape. 

• Most lenses are made with a spherical shape since this 
can be accurately manufactured economically

• The alignment of the beam is not so critical as with a 
perfect aspheric shape
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Thermal Distortion

• High power laser beams are absorbed by 
lenses/optics
– Selection of right optics ZnSe with CO2
– The power distribution in TEM00 causes more 

severe gradients than Donut
• Shape change of lens
• Varies the refractive index, specially in ZnSe
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Astigmatism and Damage

• Due to optical misalignment
• Damage

– Due to dirt accumulation and burning on lens 
surface
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Summary
• Absorption
• Beam Modes
• Propagation
• Focusing
• Aberrations
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