
Analytical Modeling of Laser 
Moving Sources 



Contains: 
• Heat flow equation 

• Analytic model in one dimensional heat flow 

• Heat source modeling 

– Point heat source 

– Line heat source 

– Plane heat source 

– Surface heat source 

• Finite difference formulation 

• Finite elements 
 

 

 

 



Heat flow equation  

Heat flow through differential element 
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One dimensional heat conduction 
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Flux formulation in one dimension 



Flux formulation 
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Heat source modelling: 
Introduction: 

• Why modeling? 

1. Semi-quantitative understanding of the process mechanism for the 
design of experiments. 

2. Parametric understanding for control purpose. E.g. statistical charts. 

3. Detailed understanding to analyse the precise process mechanisms 
for the purpose of prediction, process improvement . 

 

Types of heat sources: 

Point heat source. 

Line heat source. 

Plane heat source. (e.g. circular , rectangular) 



1.Instantaneous point heat source: 
The differential equation for the conduction of heat in a stationary medium assuming 
no convection or radiation, is  

 

 

 

 

This is satisfied by the  

solution for infinite body, 
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gives the temperature rise at position (x, y, z) and time t due to an instantaneous heat 
source dq applied at position (x’, y’, z’) and time t’; where dq = instantaneous heat 
generated, C = sp. heat capacity, α = diffusivity, ρ = Density, t = time, K = thermal 
conductivity. 

 

 

 

 

 

 

Instantaneous heat source
(x’, y’, z’, t’)
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Temperature rise
location, (x, y, z, t)

Distance between the  points



Temperature rise in semi-infinite body 
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• A mirror image can be used 

• No heat transfer at the surface of semi-infinite body 
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Semi-infinite body 

• 𝑑𝑇 𝑥, 𝑦, 𝑧, 𝑡 =

𝛿𝑞
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• If the heat is applied at the surface or z’=0, such as moving area heat 
sources 

• 𝑑𝑇 𝑥, 𝑦, 𝑧, 𝑡 =
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Results: 
1. When (x, y, z) = (0,0,0) and (x’, y’, z’) = (0,0,0) 

        T = 473.3379 

2. When (x, y, z) = (0.5,0.5,0) and (x’, y’, z’) = (0,0,0) 

        T = 413.0811 

3. When (x, y, z) = (2,2,0) and (x’, y’, z’) = (0,0,0) 

  T = 53.5792 

For  temperature over entire surface  

consider heat source at (0,0,0)  

and workpiece have dimension  

50 X 50. Temperature distribution  

Is shown in figure. 

 

 

 

 

  

 



2. Continuous point heat source in infinite body: 
If the heat is liberated at the rate dQ= P.dt’ from t = t’ to t = t’+ dt’ at the 
point (x’,  y’, z’), the temperature at (x, y, z) at time t is found by 
integrating above equation, and C = sp. heat capacity, α = diffusivity,       
ρ = Density. From the point heat source solution, 

 

 

 

Now if the heat source is on from time t’=0 to t’=t continuously it can be 
written as 
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Continuous point heat source 
To simplify the situation, one can assume that the heat 
source was switched on at time, t’=-t and turned off at t’=0 

 

𝑑𝑇 𝑥, 𝑦, 𝑧, 𝑡 =  
𝑃𝑑𝑡
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where Q is in Watts.  As  t→ ∞  steady state temperature 
distribution occurs given by  

 

𝑇 𝑥, 𝑦, 𝑧 =
𝑃

4 𝜋𝑘
exp − 𝑥 − 𝑥′ 2 + 𝑦 − 𝑦′ 2 + 𝑧 − 𝑧′ 2  
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Moving heat source solution steps 
• Moving heat source is in fact a continuous stationary source 

in moving frame of reference 

• Next step is used to find the superposition of point solutions 
in spatial co-ordinates in moving frame of reference for 
obtaining, line, plane or volumetric heat source. 

• Transform the solution to fixed coordinate system 

• Integrate with respect to time (t’) for final solution in T(x, y, z, 
t) 
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Initial laser location (x’, y’, z’) in both fixed and 
moving coordinate system

At time t’, laser location in fixed
coordinate system
and moving system (x’, y’, z’)

(x’ +vt’, y’, z’)

Moving laser source along X -axis in a semi -infinite body

X

Y
Z

,Y

,Z Location of moving 
Coordinate system at time t’
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In moving coordinate system: 

In fixed coordinate system: 

'q Pdtd 

Moving point heat source in semi-infinite body 

Note that 



Moving point heat source: 
  Consider point heat source P heat units per unit time moving with velocity v on semi-

infinite body from time t’= 0 to t’= t. During a very short time heat released at the 

surface is dQ = Pdt’. This will result in infinitesimal rise in temperature at point (x, y, z) 

at time t given by,  

 

 

 

 

 

The total rise in of the temperature can be obtained by 

 integrating from t’=0 to t’= t  
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Line heat source in infinite body: 
Temperature for the line heat source can be obtained directly  by integrating the solution of the 
point source in the moving coordinate system. 

•  line source in moving coordinate: 

Line source parallel to z-axis and passing through point (x’ , y’) in moving system. The 
temperature obtained by integrating , where C = sp. heat capacity, ρ = Density, K = 
thermal conductivity. Here Ql = heat per unit length 

For infinite body 

 

 

 

This point source in moving coordinates can be superposed 

for infinite line along z, 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. keyhole model (W. Steen) 
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Infinite line source 

• Integrating in moving coordinate system with respect to 
spatial variables, 

 

 

• Convert to stationary frame and integrate to time 

X= x-vt’, Y=y  and Z=z 
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This can be integrated numerically 

𝑑𝑇 X, Y, 𝑡 =
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Moving line heat source 
• Using the same concept used in stationary continuous point 

where the laser (heat source) started at t’ =-t,  and at time 
t0 the laser source is at origin (x’=0 and y’=0). One can get 
solution at (X,  Y) from laser source:  

𝑇 X, Y, 𝑡 =  
𝑞𝑙 𝑑𝜏
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exp −
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Similar result can be obtained by transformation, 
𝑡 − 𝑡′ =  𝜏 

𝑥 − 𝑣𝑡′ = 𝑥 + 𝑣 𝜏 − 𝑡 = 𝑥 − 𝑣𝑡 + 𝑣𝜏 

At time t, x-vt =X, location in moving or laser coordinate system  

𝑥 − 𝑣𝑡′ =  𝑥 − 𝑣𝑡 + 𝑣𝜏 = 𝑋 + 𝑣𝜏 and 𝑑𝜏 = −𝑑𝑡′ 

The limits, at 𝑡′ = 0, 𝜏 = 𝑡 𝑎𝑛𝑑𝑡′ = 𝑡, 𝜏 = 0 
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𝑞𝑙 𝑑𝜏

4𝜋𝑘(𝜏)
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This also needs to be integrated numerically 

 



The steady state solution at  t→ ∞ , 

𝑇 𝑥, 𝑦 =
𝑞𝑙 

2𝜋𝑘
𝑒−
𝑣 𝑋
2𝛼𝐵𝑒𝑠𝑠𝑒𝑙𝐾 0,

𝑣 𝑋2 + 𝑌2

2𝛼
 

Bessel function of second kind 0 order 

It may be noted that it is a steady-state solution and X, Yare 
from the laser center. 
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Plane heat source: 
 

 

 

 

Surface heat source: 

• Area (circular, rectangular heat source) 

• Applied on x-y plane. 

• Temperature depends on intensity. 

• Application: surface hardening,  

surface cladding etc. 

 



Gaussian moving circular heat source: 
Gaussian heat source intensity  

 

 

In moving coordinate system, 

 

 

 

 

 

Superposing the point solutions for the Gaussian beam, 

 

 

 

 

 Moving heat source. 

Where P = laser power, σ = beam radius, v = scanning velocity, a = diffusivity, t  =time. 

 

 

 

 
2 2 2

3

2

2 ( ') ( ') ( )
, , , ' exp[ ]

4 ( ')
(4 ( '))

q X x Y y Z
dT X Y Z t

a t t
C a t t

d

 

   
 




2 2 2

3

2

2 ' ( ') ( ') ( )
( ', ') ' 'exp[ ]

4 ( ')
(4 ( '))

dt X x Y y Z
dT I x y dx dy

a t t
C a t t 

   
 




3

2 2

2 2 2 2 2 2 2

2

4 '
( ')

(4 ( '))

2 ' 2 ' ' 2( ) ' ( ) ' 2 '
' 'exp[ ( )]

4 ( ')

Pdt
dT t

C a t t

x y x X x X y Yy Y Z
dx dy

a t t

  



 

 

 



      
 

 



Rewriting the solution for fixed coordinate system,  
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Rewriting the solution for fixed coordinate 

system,  
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Numerical integration can be carried out for the above equation 

If solution is required in moving or laser coordinate system, transformation described in 
line source can be used: At time t, x-vt =X, location in moving or laser coordinate system  

𝑥 − 𝑣𝑡′ =  𝑥 − 𝑣𝑡 + 𝑣𝜏 = 𝑋 + 𝑣𝜏 and 𝑑𝜏 = −𝑑𝑡′ 
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Modeling Gaussian heat source: 
Material and process parameters: for EN18 steel 

 

Laser power = 1300W                                  Diffusivity = 5.1mm^2/sec 

Scanning velocity = 100/6 mm/sec               Density = 0.000008 kg/mm^3 

Interaction time = 0.18sec.                            Sp. Heat capacity = 674 J/kg k  

Beam Radius = 1.5mm           

 

Temperature distribution  X-Y plane                        Temperature along X-Z plane.                  



Uniform intensity: 
• Uniform circular moving heat source: 

In the Uniform heat source, Q is defined by the magnitude  

q and the distribution parameter σ. The heat distribution, Q,  

is given by,                           Where A = π*σ2   
 

  for circular heat source integrating with space variables, 

 

 

 

 

 

 

Now final temperature equation is obtained by integrating with time from 0 to t,  
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•Uniform rectangular moving heat source: 

Rectangular heat source of dimension –l < y’ < l and –b < x’< b i.e. for semi-infinite body  
moving with constant velocity v from time t’ = 0 to t’ = t.  

Heat intensity I is given by,                        where A = 4*b*l 

 

Integrating with the space variables, 

 

 

 

 

 

 

 

 

 

Results can be obtained by numerical integration with respect to time. 
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Comparison of Gaussian and uniform heat 
source: for EN 18 steel 

No 

1 

2 

3 

4 

5 

Fig. Comparison of 
width/depth of hardened 
zone[13] 

Results: 



Finite difference formulation: 
• Nodal points 

• Nodal network 

• Regular or irregular 

• Types  - coarser 

              - fine 

……Temperature at time interval ∆t 



Finite Element Models 
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Thermal Modeling 

– Heat generated in workpiece due to cutting is small compared 
to the heat generated by the laser 

– A scaled model (5mm x 2mm x 2mm) is used  

– The Gaussian distribution of laser power intensity Px,y  is given 
by: 

 

 

– The average absorptivity of incident irradiation is determined 
experimentally 

– Temperature dependent thermophysical properties are used 
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Mathematical Formulation 
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The 3-D transient heat conduction equation is given by, 

T(x, y, z, 0) = T0  
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Initial condition, 

Natural boundary condition on front face, 
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Mathematical Formulation 

• Average measured temperatures are used for boundary 
conditions on remaining external surfaces 

 

• Half symmetry used at bottom face 

  0bottomq



Case Study- Thermal Model 

• Mapped dense mesh (25 mm x 12.5 mm x 20mm) 

• An 8 noded 3-D thermal element (Solid70) is used 

• Gaussian distribution of heat flux applied to a 5x5 element matrix 
which sweeps the mesh on the front face 
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Temperature Simulation 
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NODAL SOLUTION

STEP=41

SUB =10

TIME=6

TEMP     (AVG)

RSYS=0

SMN =150

SMX =1876

(Laser scan direction)
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Simulated temperature distribution for H-13 steel (10 W laser power, 10 

mm/min scan speed and 110 mm spot size) 


