Analytical Modeling of Laser
Moving Sources
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Heat flow equation

For developing basic heat flow equation,

consider the differential element.

Heat balance in element is given by,
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Heat in — Heat out + Heat generated Heat flow through differential element

= Heat accumulated
Heat in and out rates depends on conduction and convection.

For x axis,
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Heat Flow Equation

heat accumulation = pC, %AxAyAz

heat generated = HAxAyAz

kV°TAxAyAz — pC,UVTAxAyAz + HAxAyAz =
pCy 3—7; AxAyAz
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One dimensional heat conduction

¥ the heat flow in only one direction and there is no convection or heat
generation, the basic equation becomes

02T 10T . .. :
2= =ar where a = diffusivity, t = time

* Using separation of variables, the solution can be assumed to
be a product of spatial variable, u(z), and time variable, v(t):

T(zt) = u(z) v(t)
0°u(z) _ U@ ()

v(t) 0z2 a Ot
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u(z) = Acos(fz) + B sin(fz)
v(t) = Ce¥P°t




Flux formulation in one dimension
If the heat flow in only one direction with a flux input at z=0
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q(z,t) = —k 20 (2)
Differentiating Eq. (2) with respect to space variable
62q . 63_T
02 = Ko 3)

The one dimensional heat conduction equation given by Eq. (1) is
differentiated with space variable,
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Differentiating Eq. (2) with respect to time variable yields,
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Flux formulation
By manipulating Eq. (3) to (5)

2
%=§(%) iN0<z<oot>0 (6)

The boundary and the initial conditions are given by,
q(z,t) = fyatz=0,t >0
q(z,t) =0att =0

The solution for this is given by,

T(zt) = fo[(‘” e 4at—5erfc(\/£%)]

At the surface (z—O) the temperature is

T(O,t) 2 fO (O: t)




Heat source modelling:

Introduction:

Why modeling?

1. Semi-quantitative understanding of the process mechanism for the
design of experiments.

2. Parametric understanding for control purpose. E.g. statistical charts.

3. Detailed understanding to analyse the precise process mechanisms
for the purpose of prediction, process improvement .

Types of heat sources:

Point heat source.

Line heat source.

Plane heat source. (e.g. circular, rectangular)




1.Instantaneous point heat source:

The differential equation for the conduction of heat in a stationary medium assuming
no convection or radiation, is p

emperature rise
location, (x, Yy, z, t)
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This is satisfied by the
solution for infinite body, " Instantaneous heat source
5q (x=x")* +{y-y") +(z-z
dT(x,y,z,t) = 37 €xXp | — aa(t—th
pC(4ma(t—t")) ’2

gives the temperature rise at position (x, y, z) and time t due to an instantaneous heat
source 0q applied at position (x’, ¥, z’) and time t’; where 0q = instantaneous heat
generated, C = sp. heat capacity, a = diffusivity, p = Density, t = time, K = thermal
conductivity.




Temperature rise in semi-infinite body

* A mirror image can be used

* No heat transfer at the surface of semi-infinite body

8q (x=x")+(y-y")* +(z-2")*
dT (x,y,z,t) = 37, €XP | — 7
pC(ama(t—t")) /2 4a(t-t’)
+ 2 exp _(x‘x')2+(y—3")2+(2+2’)2]
pC(4na(t—t'))3/2 4a(t-th




Semi-infinite body

dT (x,y,z,t) =
24 s—exp |— (X—x’)2+(y_y')2] Iexp [_ (Z_Z,)Z + exP (z+2) ”

pC(4ma(t—t")) /2 4a(t—t") 4a(t-t") 4a(t—t")

If the heat is applied at the surface or z2’=0, such as moving area heat
sources

26q (x—x')2+(y—y,)2+z2
dT(x,y,z,t) = 3/, €XP [_ 4a(t-t") ]
pC(ama(t—t")) "2 *




Results:

1. When(x, v, z) =(0,0,0) and (x’,y’, z’) =(0,0,0)

T=473.3379
2. When (x, y, z) =(0.5,0.5,0) and (x’, y’, 2’) = (0,0,0)

T=413.0811
3. When (x, v, z) =(2,2,0) and (x’, y’, 2’) = (0,0,0)

T=535792 e
For temperature over entire surface e [f:i . I
consider heat source at (0,0,0) L e o NN
and workpiece have dimension
50 X 50. Temperature distribution
Is shown in figure.




2. Continuous point heat source in infinite body:

If the heat is liberated at the rate dQ= P.dt’ fromt=t" to t =t'+ dt’ at the
point (x, y’, Z’), the temperature at (x, y, z) at time t is found by
integrating above equation, and C = sp. heat capacity, a = diffusivity,
p = Density. From the point heat source solution,
0T (%, y,2,t) = Pdt 3exp[_(x—x')2+(y—y')2+(z—z')2
pC(4ra(t—t))?

Now if the heat source is on from time t'=0 to t’=t continuously it can be
written as

=t Pdt’ x—x)2+ @y —¥)? + (z - 2)?
=0 pC(4ma(t —t'))2




Continuous point heat source

To simplify the situation, one can assume that the heat
source was switched on at time, t'=-t and turned off at t'=0

‘ Pdt — 2 a2 N2
dT(x,y,2,t) = J exp[ (x — x") +(y4a(¥)) +(z—2)
pC(4na(t))2

where Q is in Watts. As t— oo steady state temperature
distribution occurs given by

P
4 1tk

T(x,y,2z) = exp[—(x —x)? + (y = y)* + (z — 2')?]




Moving heat source solution steps

Moving heat source is in fact a continuous stationary source
in moving frame of reference

Next step is used to find the superposition of point solutions
in spatial co-ordinates in moving frame of reference for
obtaining, line, plane or volumetric heat source.

Transform the solution to fixed coordinate system

Integrate with respect to time (t’) for final solution in T(x, v, z,
t)




Moving point heat source in semi-infinite body

Initial laser location (x’, y’, Z’) in both fixed and
moving coordinate system

At time t’, laser location in fixed
coordinate system (x’ +vt’, y’, Z)
and moving system (x’, y’, Z')

Location of moving
Coordinate system at time t’

Moving laser source along X -axis in a semi -infinite body

In moving coordinate system:
dT (X,Y,Z,t)=

256¢q : eXp[_(X —X) :a((\tf_—tx'/)') +(Z2) 1
pC(4ra(t—t")2

In fixed coordinate system:

dT (x,y,z,t)= 209

(X=vt'=x)* +(y—y)* +(2)°
da(t—t"

T exp[—
pC(4ra(t—t")2

Note that o0q = Pdt’



Moving point heat source:

Consider point heat source P heat units per unit time moving with velocity v on semi-
infinite body from time t'= 0 to t'= t. During a very short time heat released at the
surface is dQ = Pdt’. This will result in infinitesimal rise in temperature at point (X, y, z)
at time t given by,

dT (x,y,2,t)= f 2Pdt 5 exp[- (X V=) :a((:/__t)./)l) t(z-2) ]
t=0 »C(4ra(t—t"))2

The total rise in of the temperature can be obtained by
integrating from t'=0 to t'=t




Line heat source in infinite body:

Temperature for the line heat source can be obtained directly by integrating the solution of the
point source in the moving coordinate system.

* line source in moving coordinate:

Line source parallel to z-axis and passing through point (x’, y’) in moving system. The
temperature obtained by integrating , where C = sp. heat capacity, p = DenS|ty, K=
thermal conductivity. Here QI = heat per unit length faser beam [

bsorbed power, Q
/
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This point source in moving coordinates can be superposed

for infinite line along z,
g dt’ 3 Te ol (X =X+ (Y =y +(Z Z.)z]szlg. keyhole model (W. Steen)

dT'(X,Y,t)= 3 sa(t_t)
pC(4ra(t—-t")? =~




Infinite line source

* Integrating in moving coordinate system with respect to
spatial variables,

dT (X, Y, t) = 94 [ (X —x")2 4+ (Y —y')?

A1 k( 4a(t —t")

* Convert to stationary frame and integrate to time
X=x-vt’, Y=y and Z=z

T —To(x,y,t)
_ ft qdt’ [ G-vt—x) 4 -y
oo dmk(t —t) P 4a(t —t')

This can be integrated numerically




Moving line heat source

* Using the same concept used in stationary continuous point
where the laser (heat source) started at t’ =-t, and at time
7=0 the laser source is at origin (x’=0 and y’=0). One can get
solution at (X, Y) from laser source:

t 2 2
q; dt X+vr)+Y
TX, Y, t) = —
& Y,0) jo amk(t) P 4a(7)
Similar result can be obtained by transformation,
t—t' =1

x—vt'=x+v(t—t)=x—vt+vr
At time t, x-vt =X, location in moving or laser coordinate system
x—vt' = x—vt+vr=X+vranddr = —dt’

The limits, att' =0, Tt =tandt' =t, 1 =0
0 g, dt (X + vr)? + Y?

TEY,8) = jt Atk (1) =P 4a(7)

This also needs to be integrated numerically




The steady state solution at t— oo,

q _vX VX2 + Y2
T(x,y) =ﬁe 2a BesselK | 0, o

Bessel function of second kind O order

It may be noted that it is a steady-state solution and X, Yare
from the laser center.




Plane heat source:

Surface heat source:

* Area (circular, rectangular heat source)
* Applied on x-y plane.

* Temperature depends on intensity.

* Application: surface hardening,
surface cladding etc.

Temperature survey points a-j
correspond to Figure 7. All
dimensions in mm.
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Gaussian moving circular heat source:

Gaussian heat source intensity

A " q
1) EhFE | E(:r—j."]] ' ] @
X, V)= — Exp|— . x(€
J o~ a-
In moving coordinate system, LS.
4T (XY, Z,7) = 200 gepp. (X=XDH O —y) 4+ (2)°
da(t—t") = y(¥)
pC(Ara(t—t ))2 0 /
2t o (X=x)+(Y —y)’ +(2)
dT = =1 (x', y")dx"dy'exp[- ]

SC(Aralt—t))? 4at-t)

z(f)
Superposing the point solutions for the Gaussian beam,
0T (t) = APdt

3><

7o’ pC(4ra(t—t)?2

x'2_ , ) 2 o )
Idx Idy exp[-(2X ;Zy 2(X)X'+ (X)2+y2-2Yy'+Y? +Z

da(t—t" )

Moving heat source.
Where P = laser power, 6 = beam radius, v = scanning velocity, a = diffusivity,




Rewriting the solution for fixed coordinate
system,
2

APdt' ro’da(t—t") ox C2((x=vt) +yt) 7

S o7 +8at—t) T o7 +8alt—t) 4a(t—t')]

dT (t) =
7o pC(4ra(t—t'))?

t'=t 1 n -0.5 . n 2 2 2
dt'(t—t") exp[—2((x Vi) +y) 7

pCﬂ\/4a J‘02+8a(t—t') o’ +8a(t—t") 4a(t—t'):I

T-T,=
Numerical integration can be carried out for the above equation

If solution is required in moving or laser coordinate system, transformation described in
line source can be used: At time t, x-vt =X, location in moving or laser coordinate system

x—vt'= x—vt+vr=X+vranddr = —dt’

dr(z)™°® exp[— 2(X +vr)* +Y?) B Z?

pC;z\/4a ja +8a(r) o’ +8a(r) 4a(T)]

T-T, =




Modeling Gaussian heat source:

Material and process parameters: for EN18 steel

Laser power = 1300W Diffusivity = 5.1mm”"2/sec
Scanning velocity = 100/6 mm/sec Density = 0.000008 kg/mm~3
Interaction time = 0.18sec. Sp. Heat capacity = 674 J/kg k

Beam Radius = 1.5mm

Temperature distribution X-Y plane Temperature along X-Z plane.
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Uniform intensity:

* Uniform circular moving heat source:
In the Uniform heat source, Q is defined by the magnitude =
g and the distribution parameter o. The heat distribution, Q, =

is given by, I(x,v) = g Where A = t*o?

for circular heat source integrating with space variables,

dT(X.Y.Z.1t) = 2Pdt” expl- 4a(f—t')]x
8 pCro? (ra(t —t")?
, PR .
(X =X) . (Y =y) .
Sl a1 ) GI P -ty Y

Now final temperature equation is obtained by integrating with time from 0 to t,




*Uniform rectangular moving heat source:

Rectangular heat source of dimension -l <y’ <land -b < x’< b i.e. for
moving with constant velocity v fromtimet’'=0tot’ =t.

Heat intensity lis given by, ;i y) = P where A = 4*b*|
A

15

Integrating with the space variables,

dT (X.Y,Z.t) = 2Pdt _exp[—

4bl pC (47ra(t —t"))?2

(X —x")* . Y —yH2. .,
-[e PL= da(t —t' )]dx _IbeXp[_ da(t —t')]dy

Results can be obtained by numerical integration with respect to time.




Comparison of Gaussian and uniform heat
source: for EN 18 steel
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Fig. Comparison of
width/depth of hardened
zone[13]

Results:
Distribution Beam Shape Max. Surface Depth (mm) Width (mm)
Temperature(°C)
Gaussian Circular 1272 1 1.5
Uniform Circular 1072.3 0.68 1.5
Rectangular 996 0.55 1.5
Long
Rectangular 1015.2 0.12 1.65
short
Square 1023 0.5 1.2




Finite difference formulation:

— - * Nodal points
N : * Nodal network
2| | ; . 1 | ... <Regularorirregular
o * Types - coarser
4 - fine
m,1el
convection and conduction
LIT _ar  ar ]
32 o oz —
Ty-T T-Tg |2z la—az |




Finite Element Models




Thermal Modeling

— Heat generated in workpiece due to cutting is small compared
to the heat generated by the laser

— A scaled model (5mm x 2mm x 2mm) is used
— The Gaussian distribution of laser power intensity P, , is given

by: 2P 2r?
r

I:)x y — tgt EXP| — 2

’ 7 1

b b

— The average absorptivity of incident irradiation is determined
experimentally

— Temperature dependent thermophysical properties are used




Mathematical Formulation

The 3-D transient heat conduction equation is given by,

o( oT) o, oT) o aT) . oT oT
k k k = pC, — V—
8x( 6xj+8y( 8y)+6z( azj+Q Pop 0 TR
Initial condition,
T(x,y,2,0) =T,

Natural boundary condition on front face,

kZ—T—quh(T —TO)+08(T4 —T04) =0
n

oT
k—-q+h(T-T,)=0
an q e( 0)

h,=2.4x107°TH




Mathematical Formulation

* Average measured temperatures are used for boundary
conditions on remaining external surfaces

* Half symmetry used at bottom face

qbottom — O




Case Study- Thermal Model

JUL 19 2006

Mapped dense mesh (25 um x 12.5 um x 20um)
An 8 noded 3-D thermal element (Solid70) is used

Gaussian distribution of heat flux applied to a 5x5 element matri e '
which sweeps the mesh on the front face
\ g




Temperature Simulation

HNODAL SOLUTION

(Laser scan direction)

150 533.653 917.307 1301 1685
341.827 725.48 1109 1493 1876




