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ABSTRACT: Colloidal quantum dots (CQDs) allow broad tuning
of the bandgap across the visible and near-infrared spectral
regions. Recent advances in applying CQDs in light sensing,
photovoltaics, and light emission have heightened interest in
achieving further synthetic improvements. In particular, improving
monodispersity remains a key priority in order to improve solar
cells’ open-circuit voltage, decrease lasing thresholds, and improve
photodetectors’ noise-equivalent power. Here we utilize machine-
learning-in-the-loop to learn from available experimental data,
propose experimental parameters to try, and, ultimately, point to
regions of synthetic parameter space that will enable record-
monodispersity PbS quantum dots. The resultant studies reveal
that adding a growth-slowing precursor (oleylamine) allows nucleation to prevail over growth, a strategy that enables
record-large-bandgap (611 nm exciton) PbS nanoparticles with a well-defined excitonic absorption peak (half-width at
half-maximum (hwhm) of 145 meV). At longer wavelengths, we also achieve improved monodispersity, with an hwhm of
55 meV at 950 nm and 24 meV at 1500 nm, compared to the best published to date values of 75 and 26 meV, respectively.
KEYWORDS: colloidal quantum dots, nanocrystals, synthesis, PbS, machine learning, Bayesian optimization

PbS colloidal quantum dot (CQD) syntheses with
polydispersities below 5−10% were established 15
years ago based on PbOA2 and bis(trimethylsilyl)

sulfide ((TMS)2S) precursors.1 Soon after, an alternative
synthesis using PbCl2 and elemental S dissolved in oleylamine
(OLA) was developed.2 Subsequent modifications allowed an
extended range of sizes3 and improved monodispersity4 in the
PbCl2-based synthesis. Recently, a library of thiourea
precursors has been developed for reproducible large-scale
synthesis of PbS.5

Despite more than a decade of research, the synthetic
parameter space has not been completely explored, and
synthesis is usually guided by a simplified nucleation model.6

Unfortunately, this model does not articulate the parameters
that must be combined to achieve size focusing. It is known
that increasing the Pb:S ratio, increasing the injection
temperature, and increasing the OA:Pb ratio will increase the
CQD size. However, up until now it was unclear which
parameter combination is responsible for monodispersity and
why smaller CQDs have consistently poorer size dispersion.
This limited understanding is related to complex behavior in

the parameter space: retaining the bandgap requires changing
two or more synthetic parameters at a time, and this
complicates the exploration of the parameter space. Prior
works have noted that an increased OA:Pb ratio, compensated
by lower injection temperature, improves monodispersity;7,8

however, using a high OA:Pb also limits the synthesis to larger
CQD sizes (>1000 nm exciton peak).
We find herein that the addition of a growth-blocking agent,

OLA, allows smaller nanoparticles to be synthesized that have
a well-resolved exciton peak. Using machine learning (ML)
methods, specifically Bayesian optimization implemented using
a neural network, we build and explore a continuous numerical
model of the parameter space to optimize the synthesis with
monodispersity in mind. The model provides predictions
regarding which parameter combination will achieve the
desired properties, along with uncertainty associated with
this prediction. Collecting additional experimental data
following the predictions of the model allows for a gradual
improvement in the accuracy of the model. Following this
procedure, we find that OLA affects not only the size but also
the monodispersity. Further improvements to monodispersity
are achieved using a combination of high Pb:S ratio with
lowered injection temperature, as well as by addition of metal
chlorides.9 We also discuss how the ML approach can provide
insights beyond the original parameter space and contribute to
generating strategies for further improvements.
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RESULTS AND DISCUSSION

Synthesis of Smaller PbS CQDs. CQD synthesis is a
competition among two factors: the nucleation rate of new
particles and the growth rate of existing particles. Faster
nucleation leads to consumption of the limited amount of
precursors for new nuclei instead of growth, resulting in a
larger number of smaller CQDs. If, however, the already-
nucleated particles grow faster than the monomers can
combine to form nuclei, fewer particles of larger size are
obtained. It should be kept in mind that the nucleation does
not necessarily stop completely, as assumed in the “burst
nucleation” picture,6 and may proceed even at the later stages
of the reaction, resulting in a tail of small CQD sizes in the
particle distribution.10

Excess OA in PbOA2-based synthesis solubilizes nuclei, thus
slowing nucleation and producing larger particles.1 Thus, in
order to achieve the smallest particles, we focus here on a
synthesis that uses the minimum allowed OA:Pb ratio of
∼2.4:1, just enough to solubilize PbO and convert it into
PbOA2 with only a small excess of OA.
To reduce the size further, we sought to speed nucleation or

slow growth. Previously, Hens et al. demonstrated that the
PbCl2+S-based synthesis can be modified by the addition of
trioctylphosphine sulfide (TOPS) as a low-reactivity sulfur
source to obtain smaller particles.3 This was rationalized by the
reduced particle growth speed, whereas the nucleation was not
affected due to the presence of a small amount of another more
reactive precursor, OLA-S.
We sought to find a similar growth inhibitor for the

PbOA2+(TMS)2S-based synthesis. In particular, the OLA used
to solubilize S in the PbCl2+S synthesis is known to become
the primary ligand on the PbS surface, suggesting that it binds
to Pb on the surface, though not more strongly than does OA.3

We thus hypothesized that the presence of OLA can bind to,
and block, the CQD surface, and in this way slow growth. It
can, however, bind to PbOA2 precursors, too, and thus slow
nucleation. The binding strength may be sensitive to the
nuclei/QD size, and therefore we sought to explore
experimentally whether nucleation or growth was affected
more. Our experimental tests demonstrated that smaller
particles are achieved (down to 630 nm exciton peak), with
the exciton peak well resolved in the absorption spectra,
indicating that the slowing of particle growth was the larger
effect.
Machine Learning Synthesis Optimization. We sought

to analyze whether the synthesis could be further improved in
terms of the exciton line width. We digitized laboratory data
from the past 6 years (2300 syntheses shown in Figure 1, many
of which were repeats of nominally the same parameter set). As
can be seen, the parameter space remains largely unexplored
because better monodispersity was not a primary goal until
recently.
Optimizing synthesis is a laborious task because to stay at

the same bandgap, not one but several synthetic parameters
have to be changed at once. The local gradient along which to
move in order to improve the desired output (in our case, the
line width) can in principle be found by a finite difference
method, i.e., by doing multiple measurements with a small
deviation around each point in the parameter space.
Estimating the local gradient is, however, complicated by

experimental noise. Repeating the same synthesis several times
results in bandgap variations of up to 30 nm (SI Figure 1),

rendering the estimate of the gradient unreliable. This
variability originates from changes in the environment
temperature and differences in glassware used for each
experiment (microcracks, scuffs, microbubbles, variations in
wall thickness, etc., for nominally identical flasks), affecting the
heating and cooling speed, the temperature of the solvent, and
the temperature of the injected (TMS)2S.
Testing various parameter combinations on a coarser grid

provides an approach that is less susceptible to local noise and
gives a broader picture of the effect of each parameter.7

However, in light of the number of parameters and the density
of the grid, exploring the entire parameter space may quickly
become too time-consuming (SI Figure 2).
We turned to ML to replace the dense regular grid with a

sparser set of points in the parameter space.11 The results
between the measured points are interpolated using smooth
spline-like functions. In our case this is achieved using a neural
network with nonlinear exponent-based activation functions.
The accuracy of the interpolation is higher in proximity to
available points, while confidence decreases when far from
them. The general trends of the functional behavior are
captured, and this enables suggesting new points in the
parameter space that are likely to optimize the required metric
of interest. The confidence interval for the model predictions
can also be estimated (see Methods and SI Figure 1), allowing
for a more robust exploration of the parameter space.
Parameters suggested by the model are tested experimentally,
and the results are added to the data set, allowing iterative
improvement of the accuracy of the model in the regions
where previously no data were available and confidence was
low (SI Figure 1b−e and SI Figure 3), in a process of Bayesian
optimization. Once the approximate position of the optimum
is located, the algorithm starts to sample points around it on a
denser and denser grid, until the exact optimum position is
pinpointed. This nonlinear regression in multidimensional
space has been proven to be at least an order of magnitude
faster than the regular grid search12 and has become more
accessible with the advent of open source ML libraries
(TensorFlow, SciKit, PyTorch, etc.). The potential of nonlinear

Figure 1. Parameter space coverage. Experimental data points in
the input space of Pb precursor volume and injection temperature.
Filled circles are the original pre-ML data (∼2300 points); empty
circles are the experiments performed following the ML
suggestions (230 data points). Note that all data points with
different S and OLA amounts are separated in other dimensions
but are projected onto one plane in this plot. Color scale indicates
the bandgap wavelength in nanometers.
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regression in quantum dot synthesis has recently been
demonstrated in selecting multiple synthetic procedures to
target the same bandgap in perovskite CQDs.13 We emphasize
that the approach does not require thousands of data points,
and several tens of syntheses may suffice to achieve meaningful
improvements targeting a specific metric.
Factors Affecting Monodispersity. The trainedML

model allowed us to visualize the effect of each synthetic
parameter on the outcome of the synthesis, starting from a
given combination of parameters (Figure 2a, SI Figure 4). This
analysis shows that the effects of Pb:S ratio and of temperature
are not equivalentthey are not parallel in the plotand that
the combination of higher Pb:S ratio and lower injection
temperature is beneficial for half-width at half-maximum
(hwhm) (Figure 2a yellow arrow and Figure 2b). This is
similar to observations for PbCl2+S-based syntheses in which
Pb:S ratios as high as 24:1 were used to yield the best
monodispersities. However, the effect of injection temperature
on monodispersity was not previously explored, and instead
the CQD size was controlled using an (operator-dependent)
quenching of the reaction at a specific time.2−4

We also find that in the PbOA2-based synthesis, the Pb:S
ratio cannot be increased indefinitely, achieving optimum
monodispersity at Pb:S ratios around 8:1, beyond which the
nucleation essentially stops (red region in Figure 2c), resulting
in a nearly transparent solution with a bandgap of ∼650 nm
and poor monodispersity with no exciton peak discernible.
We plot in Figure 2c a continuous function of outputs in the

parameter space, interpolating between experimental points.
We observed that the reaction is sensitive not just to Pb:S ratio
but also to the absolute concentration of the precursors, i.e.,
saturation of the solution. This effect is even more pronounced
in the synthesis of smaller CQDs.

Dependence on the concentration is a signature that the
reaction remains in part diffusion-limited. This defies the
assumptions inherent in an idealized model of nucleation and
growth6 and highlights the importance of systematic
exploration of the parameter space instead of relying on
simplified models.

Effect of OLA. Our initial efforts focused on using OLA
exclusively for the smallest PbS CQDs. Only several
exploratory syntheses were made that resulted in larger
CQDs. These few points, however, were sufficient for the
ML algorithm to detect a positive effect of OLA on the
monodispersity and prompted us to explore this effect further
in combination with other parameters. The effect of OLA is
similar to that of reduced temperature (Figure 2a) and
provides an additional degree of freedom in tuning the
synthesis and allowing to further improve the monodispersity
for CQDs in the 600−1300 nm wavelength range (Figure 3).

Effect of Chlorides. Addition of chlorides (CdCl2, PbCl2,
tetrabutylammonium chloride) was previously used to improve
surface passivation,9,14,15 and we find here that it has an effect
on monodispersity as well (SI Figure 5). The reason for such
improvement is rationalized by an analysis of the trends using
the ML model. Throughout our experiments we found that
PbCl2 has the strongest effect on monodispersity compared to
other chlorides. In addition, in order to improve the solubility
of metal halides, an addition of OLA was always used. The
effect of chlorides is thus a combination of increasing the metal
content and adding OLA, a combined effect like that of
increased PbOA2 and reduced injection temperature discussed
above (Figure 2a). We note, however, that PbCl2+OLA
injection can further improve even the best synthesis where
OLA addition has already been employed and its amount
optimized. This means that the timing of Pb and OLA addition

Figure 2. Factors affecting monodispersity. (a) Combined effect of increased Pb precursor amount and decreased injection temperature,
allowing to maintain the bandgap but improve the monodispersity. See Methods for the definition of polydispersity metric. (b) Same as (a)
but in the input space (darker color means smaller hwhm). (c) ML model predictions regarding the effect of the Pb:S precursor ratio on the
bandgap, with temperature range limited to values optimal for growth of CQDs with 1500 nm exciton peak. Gray circles: experimental data
points falling within the same parameter range.
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plays a role, presumably by decoupling their effect on
nucleation, which happens at early times, vs particle growth,
which happens at later times. This indicates an additional
synthetic parameter that can be optimized in the future.
Experimentally Verified Best Syntheses. Below we

present the best syntheses for several CQD sizes in terms of
monodispersity that were suggested by the ML model and
verified experimentally. Each was performed multiple times,
and error bars are reported along with the results.
Addition of OLA allows reproducibly achieving CQDs with

a bandgap in the 610−620 nm range (∼2 eV) with a well-
defined excitonic peak (hwhm of 145 meV). Additional XRD
and TEM characterization of these CQDs is provided in SI
Figures 6 and 7, yet absorption remains the most sensitive
technique to assess monodispersity.
The results for 950 nm (1.3 eV) are the best reported to

date, with the best hwhm of the exciton peak of 55 meV closely
approaching the estimated ∼50 meV hwhm single-dot
(homogeneous) emission line width.16

For CQDs around 1500 nm (0.83 eV), our hwhm of 24
meV is only 1−2 meV, better than the best previously reported
using PbCl2+S-based synthesis.4 Nevertheless, we still observe
a dramatic improvement in the peak-to-valley ratio (SI Figure
8), indicating that here too we are approaching the

homogeneous line width. We also observe three well-defined
higher-energy transition peaks in the absorption spectra
(Figure 4) in contrast to only one peak observed for the
best PbCl2+S-based synthesis,4 although this difference could
be due to other factors, such as the CQD shape (SI Figure 7).
Such CQDs are the best candidates for achieving dense
packing and band-like electronic transport in CQD ensem-
bles.4,17 The true homogeneous line width, however, depends
on multiple factors, such as electron−phonon-assisted broad-
ening18 and fine structure of multiple optical transitions
contributing to the first exciton peak.19 In the absence of
single-dot line width measurements, it is thus difficult to assess
whether we have achieved a homogeneous line width.

CONCLUSIONS

We have demonstrated that OLA allows improved
PbOA2+(TMS)2S-based PbS CQD synthesis, in both size
range and monodispersity.
Machine learning allowed more efficient exploration of the

parameter space, a systematic route to finding optimal
synthetic conditions and a method of analysis that led to
suggestions of avenues toward further synthetic improvement.
In particular, even higher Pb:S ratios, but with the use of
continuous injection, could be explored to avoid nucleation
blocking. Late injection of OLA could be attempted to
decouple its effect on nucleation and growth. Different ligands
could be used to decouple precursor solubility from viscosity,
and the effect of OA:Pb ratio on monodispersity can be further
explored.
We note that a similar optimization could be used to target

other parameters of interest, as well as applied to other QDs or,
more generally, to design-of-experiments optimization. For
example, for a scale-up synthesis employing an external chiller
with silicone oil to control the solution temperature, it is
desirable to develop a synthesis with injection temperature not
exceeding 140 °C to avoid the use of an expensive higher-grade
synthetic oil. An ML-based model can suggest syntheses with
such limitations in mind. Such an optimization is expected to
be beneficial also to the recently developed PbS CQD
synthesis employing thioureas as a precursor.5

More accurate control of the synthetic parameters (environ-
ment temperature, flask quality, programmed heating and
cooling speed) can improve reproducibility and pinpoint the
parameters that cause outlier syntheses to work out better than
the average. Postsynthetic size focusing in the presence of
excess OA can also be explored.1,20 Addition of OLA or metal
chlorides, dropwise addition of precursors, and effect of
quenching time and cooling rate could all be further explored
with the aid of ML.

Figure 3. Effect of OLA and chlorides on synthesis. Experimental
data (red points) and ML predictions without additives (green),
with OLA (blue), and OLA plus Cl (gray) in the output space.
Solid red circles denote pre-ML historical data, while open circles
are the data points obtained in the course of ML optimization.
Gray points encompass the widest range of possible outcomes and
thus are placed on the lowest layer, followed by the blue and green.
Experimental results (red) are placed on the topmost layer,
overlapping with the predictions of the ML model. See Methods
for the definition of the polydispersity metric and for an
explanation of how this figure was generated.

Table 1. Experimentally Verified Synthetic Parameters for Different Bandgaps, Targeting the Best Monodispersity

target wavelength
(nm)

PbOA2
(mL)

ODEPb
(mL)

OLA
(mL) Tinj (°C)

(TMS)2S
(μL)

ODE(TMS)2S

(mL)
PbCl2
(mM) peak/valley

hwhm
(meV)

620 3.35 15 0.54 53 168 9 0 1.27 ± 0.1 145 ± 4
780 13.5 15 0.23 76 220 16.3 0.3 2.1 ± 0.1 100 ± 3
950 17.4 15 0.4 109 206 9.6 0.3 3.8 ± 0.5 60 ± 5
1150 17.7 15 0.15 110 210 8 0.3 6.6 ± 0.4 42 ± 2
1330 18 15 0 125 240 9 0.3 8.5 ± 1 27 ± 2
1500 18 15 0 140 210 8 0.3 9 ± 1 25 ± 1
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METHODS
Pb(OA)2 Preparation. In a 250 mL round-bottom Schlenk flask,

9.0 g of PbO (99.99%, Alfa Aesar), 30 mL of oleic acid (90%,
Caledon), corresponding to a 2.35:1 OA:Pb ratio, and 60 mL of 1-
octadecene (95%, Caledon) was mixed and stirred at 110 °C
overnight (over 10 h) under a vacuum of 2 × 10−2 Torr.
(TMS)2S Preparation. A large volume of 1-octadecene was

degassed overnight at 110 °C under a vacuum of 2 × 10−2 Torr. The
solution was then purged with N2 and stored in a N2-purged glovebox.
A specific amount of (TMS)2S (listed below) was diluted with the
dried ODE. This procedure was performed in a N2-purged glovebox.
Chloride Additive Preparation. The required amount of PbCl2

was added to a solution of oleylamine (98%, Sigma) in a 50 mL
Schlenk flask and heated at 80 °C in a silicone oil bath until all of the
PbCl2 dissolves in the oleylamine. Should the PbCl2 remain cloudy in
solution, the Schlenk flask was purged with nitrogen, and oleic acid
(90% tech. grade) was added dropwise to the solution to achieve a
clear solution.
PbS CQD Synthesis. The Pb(OA)2 stock solution was diluted in

15 mL of ODE at 100 °C to aid with dissolution, adding the required
amount of OLA (0−1 mL), under a vacuum of 2 × 10−2 Torr, to
achieve the required molar amount prior to (TMS)2S injection. For a
given injection temperature, the Pb(OA)2 solution was cooled to ∼50
°C, followed by slow heating. As soon as the Pb(OA)2 solution
reaches the target injection temperature, the heating mantle was
turned off and (TMS)2S solution was swiftly injected into the flask.
One milliliter of the required molarity solution of PbCl2 in oleylamine
(typically, 0.3 mM) was injected into the flask when the whole
mixture has cooled to 60 °C. The CQDs were allowed to cool to 30
°C during ∼30 min before isolation. Accelerated cooling by removing
the heating mantle, using a cold water bath or by injecting cold
toluene, was found to be beneficial to monodispersity without
affecting the target bandgap, if performed at a later stage of the
cooling process. However, quenching is incompatible with chloride
injection, since if it is done too late, it will have no visible effect on
monodispersity, but if too early, it will negate the effect of chlorides.
Acetone (distilled in glass, Caledon) was added to the Schlenk flask to
precipitate the CQDs out of the solution. The cloudy solution was
centrifuged and the supernatant was discarded. The wet CQDs were
dissolved in toluene (distilled in glass, Caledon) and reprecipitated
with acetone. The precipitation with acetone and dissolution in
toluene was repeated at least twice.
Machine Learning Model. Machine learning is known to

perform well in data interpolation, i.e., in the regions where sufficient
training data are available. Extrapolation to the regions far from the
training data points is not reliable, yet the typical models provide
predictions nevertheless. If these predictions are wrong, the model
may choose not to explore the potentially promising regions of the
input space, thus limiting the model’s effectiveness in parameter
optimization.
Bayesian models, in contrast, provide a confidence interval for their

predictions, i.e., a range of possible values instead of a single value.
This broadens the search space, and if the predictions appear to be
wrong upon experimental verification, the collected data are used to
correct the model and improve its confidence near the added points.

Gaussian processes and Bayesian neural networks are the two
major methods suitable for Bayesian optimization (i.e., capable of
estimating the confidence interval for their predictions). Gaussian
processes are known to be too computationally intensive when the
number of data points exceeds ∼300. With this in mind, we chose to
work with Bayesian neural networks.

A neural network with eight inputs (outdoor temperature, PbOA2
volume, OLA volume, (TMS)2S injection temperature, (TMS)2S
volume, ODE volume, molarity of PbCl2 injected at max temperature,
and PbCl2 injected at 60 °C), two dense layers with 20 elu nodes each,
and two outputs (bandgap and line width) was implemented using the
Google TensorFlow library and Keras API.

To obtain the confidence interval, the dropout technique during
both training and predictions was used.21 This technique does not
provide a rigorous way to assess the true value of uncertainty; thus, to
encourage broader parameter space exploration, we opted for a larger
value of dropout (10%), providing uncertainties comparable to the
noise level in the experimental data (see SI Figure 1). The use of
dropout requires a relatively wide network; we chose 20 nodes per
layer, in which case a 10% dropout corresponds to two nodes missing.
Levels of dropout below 5% would essentially result in a discrete
switching between one and zero nodes.

Different model sizes (up to 100 nodes per layer and up to four
layers) were tested in order to provide sufficient capacity in fitting the
data. Dropout and L2 regularization parameters then were chosen
based on conventional cross-validation to avoid overfitting and
underfitting (SI Figure 8). Initially, a 50% validation split was used
due to a high level of redundancy in experimental data. Further on,
once the additional ML-driven experimental data points were
collected, they were used for validation, while training on all pre-
ML historic data. To make predictions regarding which additional
experiments to perform, all data were combined into training and
were trained using the model parameters chosen at the validation
stage.

Additional visual analysis of the predictions was performed to
analyze the onset of overfitting. In particular, plots of the predictions
for a full swipe of input parameter values have a distinct shape in the
2D output space of wavelength and hwhm (see SI Figure 4). A too
jagged shape of these prediction curves is a strong sign of overfitting.
In addition, a robust model should result in the same predictions
when retrained from scratch, especially in a region where enough
training points are available; otherwise the model should be discarded
and the degree of regularization increased. In this regard, we find that
low regularization combined with early stopping, while providing
seemingly good fits, is in fact too irreproducible.

The final model with two hidden layers, 20 nodes each, takes ∼6
min on a modest desktop PC to be trained for one complete round of
15 000 epochs. Once the model is trained, data points (up to
1 000 000) in a subset of input space (either smaller or wider than
that of initial experiments) are randomly generated using a uniform
distribution, and the model predictions are recorded for each of them.
The whole process takes less than a minute. This allows plotting a
nearly continuous map, slicing through the dimensions of either input
or output space.

Data Preparation. In the historical data, the line width was not
explicitly measured, and only the peak/valley ratio was available. We

Figure 4. Absorption spectra for several CQD sizes with best monodispersities.
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thus devised a parameter proportional to exp(−peak/valley) that
correlated well with the hwhm divided by the bandgap in samples
where it was available, with the benefit that all CQD sizes would fall
into one trend (see SI Figure 10). The only requirement on the
polydispersity:hwhm relationship is that there should be a unique
mapping between the two parameters used for model training,
although they are not necessarily interchangeable. In our case, the
chosen polydispersity metric is high, where hwhm is significantly
worse than the expected homogeneous line width,4,16 for any CQD
size. On the other hand, it asymptotically reaches some value when
peak/valley is high, reflecting the asymptotic behavior of the hwhm.
In this manner, the prediction error penalizes inaccuracies in the low
peak/valley range, while being less sensitive to the exact peak/valley
value for nearly monodisperse samples. This polydispersity metric is
used in all plots throughout.
Since polydispersity and wavelength are trained simultaneously, the

total error comprises a sum of the two mean square errors. To
increase the importance of one over the other, a scaling coefficient can
be used. In the case of the Keras API, such coefficients cannot be
explicitly defined, and we used scaling of one of the dimensions of the
output data instead. In our case, the polydispersity metric is scaled
down by a factor of 3, reducing its importance in fitting. The value of
3 is chosen based on plotting the noise distribution for multiple
experiments using nominally the same parameter set (SI Figure 1)
The ambient lab temperature has a strong effect on the results of

the synthesis, affecting the temperature of the injected precursors as
well as the flask cooling rate. However, room temperature was not
recorded in the historical data. We thus used seasonal outdoor
temperature as a proxy to the temperature in the lab, although it does
not necessarily predict the daily swings in temperature within each
season.
We also noted that different supplier batches for PbO, OA, and

(TMS)2S might produce consistently biased results, as well as
(TMS)2S reactivity changes upon aging, even if stored in a glovebox.
Unfortunately, there is no way to backtrack these parameters in the
historical data, but monitoring them during future experiments might
help with further optimization.
Several chloride additives were employed experimentally: CdCl2,

TBAC, PbCl2, AsCl3. They were included in ML training but not
explicitly differentiated, as the number of such experiments was not
sufficient to justify addition of an extra variable. AsCl3 was found to be
more active than other chlorides, requiring 5× lower molarity, which
was compensated by appropriate rescaling in the ML training data.
The use of AsCl3 nevertheless did not provide any advantage in terms
of improving hwhm, and the best results were observed with PbCl2,
which was used throughout all ML-driven experiments. The majority
of the historic pre-ML data used CdCl2.
No data oversampling/balancing was performed for freshly added

experimental data points, thus representing lower certainty for
experimental results that were performed fewer times, in the spirit
of Bayesian learning.
Following the ML best practices, all input and output parameter

values were normalized (rescaled) to the [0; 1] range prior to
performing the model training, in order to ensure more robust
convergence. As a result, all output values require scaling back for
converting them to true values.
Raw data as well as the fully trained model are available in the

Supporting Information.
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