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ABSTRACT

We study the thermal conductivity distribution of hypothetical graphene-like materials composed of carbon and heavy carbon atoms. These
materials are representative of alloys and disordered materials, which are relatively unexplored for thermal properties owing to their large
configuration spaces. Since the full thermal conductivity calculations using the Boltzmann transport equation based solutions are computa-
tionally prohibitive for each of the 2** considered configurations, we employ regularized autoencoders, a class of generative machine learning
models that transform the configuration space to the latent space in which materials are clustered according to the target property. Such con-
ditioning allows selective sampling of high thermal conductivity materials from the latent space. We find that the model is able to learn
the underlying thermal transport physics of the system under study and is able to predict superlattice-like configurations with high thermal

conductivity despite their higher mass.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0028241

Thermal conductivity is a complex material property involving
the interplay of mass density, sound speed, lattice constant, and lattice
anharmonicity. The earliest model to predict the thermal conductivity
of solids was devised by Slack for crystalline materials." Subsequently,
much progress has been made in calculating the thermal transport in
crystalline solids, for instance, using the first-principles-based lattice
dynamics calculations and molecular dynamics simulations.” With the
advent of such techniques, numerous material systems have been iden-
tified, which exhibit a deviation from the Slack thermal transport
model.” Among other factors, these developments are facilitated by
advances in computational resources. However, even with these
advances in the computational resources, the thermal transport in
alloys and disordered materials is still unexplored owing to the prohib-
itively massive size of the materials configuration space.

In this regard, machine learning (ML) models are especially use-
ful since they can be easily trained to learn the thermal transport
behavior from the known/training dataset, and these trained models
can be further used to predict the thermal transport properties of new
material configurations involving the participation of the same atomic
species. Such a simple application of ML models has already been used
to predict the variety of material properties varying from ionic conduc-
tance,” crystal thermal conductivity,” thermoelectric figure of merit,”

and optoelectronic properties”” to mechanical strength,"’ nuclear fuel
systems,'’ and drug discovery.”” Most of these ML applications in
materials science are mainly focused on either fitting a surrogate
on-the-go machine learning model for exploring pre-defined finite-
sized material search space or training the ML model to predict
desired properties for a new given material. However, for alloys and
disordered solids, the search space is exponentially large. Simply using
a surrogate on-the-go or pre-trained ML model in such cases would
require an exponentially large number of ML model evaluations,
which is not viable with the existing computational resources.

A relatively new class of ML models, called generative models,
are useful in the exploration of these exponentially large material
search spaces. These trained models provide a mapping from a given
search space to the latent space in which the materials with desired
properties are clustered together [Fig. 1(b)]. Therefore, sampling
using interpolation or other related techniques can be employed to
design new materials with desired properties. Such models have been
used in materials research recently to discover new compounds from
vanadium-oxygen phase-space for battery applications'’ and to
generate images of hypothetical materials with tailored optical prop-
erties using the absorption spectrum data of a wide range of material
quinary and quaternary oxides."*
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FIG. 1. (a) 32-atom unit cell of the model graphene-like two-dimensional materials
and (b) schematic depicting feature-space transformation using an autoencoder in
conjunction with a regressor. The clustering is achieved by setting the target to the
desired material property in (b).

Here, we demonstrate the use of such ML models for searching
materials with desired thermal properties by considering hypothetical
graphene-like two-dimensional materials as a test system. In particu-
lar, we search for high thermal conductivity materials from the search
space of 2*> model graphene-like structures generated by placing a
carbon atom or a heavy carbon atom (twice as heavy as carbon, ie.,
24am.u.) at the lattice sites of the 32-atom graphene unit cell
(constructed by 4 x 2 replications of the 2-atom primitive unit cell)
[see Fig. 1(a)]. We use an autoencoder-based ML model consisting of
a convolutional neural-network-based encoder/decoder in conjunction
with a feedforward neural-network-based thermal conductivity regres-
sor. We find that this ML model attains a root mean square error
(RMSE) of 7W/mK on predicted thermal conductivity, indicating
considerably high conformance of the model predictions with the
computationally expensive Boltzmann Transport Equation (BTE)
based solution. Furthermore, we find that the ML model is able to
learn the right underlying thermal transport physics from the training
data, and it predicted high thermal conductivity for superlattice like
configurations even though no such configurations were used in the
training dataset.

We calculate the thermal conductivities of the model graphene
structures by solving the BTE under the relaxation time approximation
along with the Fourier law as'>'°

ke, = Z cph,ivi_’iri. (1)
i

The summation in Eq. (1) is over all the phonon modes in the
Brillouin zone, and ¢y, v, and t are the phonon specific heat, group
velocity, and scattering lifetime, respectively. The phonon specific heat

. . . N - on°
is obtained using the Bose-Einstein statistics as cpp; :%a—’;

= é’jﬁi’z, where x; = fiw;/kgT, and ki, w;, V, ng, T, and kg are the

reduced Planck constant, phonon frequency, crystal volume,
Bose-Einstein distribution [n) = 1/(¢" — 1)], temperature, and
Boltzmann constant. The phonon group velocities are obtained from
the derivative of phonon frequencies with respect to phonon wavevec-
tors, q, as vy; = Ow;/0qy. The phonon frequencies and scattering
rates are obtained from the diagonalization of the dynamical matrix
and three-phonon scattering processes, respectively. Further details
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regarding the phonon dynamical matrix and scattering rate calcula-
tions are detailed in Refs. 16 and 17.

The interatomic interactions between carbon atoms are described
using the optimized Tersoff model fitted to graphite and diamond."*
All thermal conductivity calculations are performed at a temperature
of 300K using a 32 atom unit cell as in Fig. 1(a). Using these settings,
the thermal conductivity is obtained for the material having all carbon
atoms in its unit cell configuration, ie., the thermal conductivity of
graphene is 717 W/m K, which is in perfect agreement with the litera-
ture reported values.'” The hypothetical materials are created by
varying the mass of one or more of the 32 carbon atoms in the unit
cell, i.e, by replacing carbon atoms with heavy carbon atoms. Note
that the interatomic interactions are kept fixed, and only atomic
masses are varied for the generation of new materials.

The dependence of thermal conductivity on atomic masses is
presented in Fig. 2(a). In the dataset, the thermal conductivity (k,) is
larger than 600 W/m K only for configurations consisting of either all
carbon atoms or all heavy carbon atoms. The thermal conductivity
decreases rapidly with the introduction of a heavy carbon (carbon)
atom in all carbon (heavy carbon) atom configurations. This sudden
decrease is due to the strong Rayleigh-like scattering of phonons from
mass-disorder/defects and has been reported for Si/Ge™ and PbTe/
PbSe”' alloys. However, unlike the high-disorder-limit treatment of
phonon scattering using Tamura’s theory in these literature studies
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FIG. 2. (a) The thermal conductivity k,, dataset obtained by varying the number
of heavy carbon atoms in the 32-atom graphene unit cell of Figs. 1(a) and 1(b),
and the performance of different ML models on the k,-dataset. The variation of k,
for a given number of heavy atoms is due to their relative spatial arrangement
[inset in (a)].
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(thus providing only the lower-bound on the thermal conductivity™),
the disorder is explicitly handled using the phonon-phonon scattering
in this study. This explicit accounting of disorder results in variations
in thermal conductivity even for a fixed number of heavy carbon
atoms in the unitcell due to local ordering of light/heavy atoms [see
the inset of Fig. 2(a)].

The simplest model to predict the mass dependence of lattice
thermal conductivity is devised by Slack, according to which the ther-
mal conductivity of simple semiconductors decreases monotonically
with the average atomic mass, 71, of the participating atoms as 1/7.'
This model fails drastically in compound semiconductors (semicon-
ductors with more than one atomic species, as in the present case)
due to the acoustic-optical phonon bandgap and acoustic phonon
bunching as has been reported earlier.”* Furthermore, for materials
with high Debye temperature (such as graphene with a Debye temper-
ature of 1800 K), the quantum phonon occupation effects are signifi-
cant and are not accounted for by the Slack model, thus resulting in
further deviations from the 1/ scaling.

Although the mass dependence of the thermal conductivity val-
ues can be explicitly calculated using the BTE-based solution, these
calculations are computationally expensive and require, for instance,
around 10 cpu-hours per material on modern cpus. Therefore, we
switch to ML models to accelerate the discovery of these graphene-like
materials with high thermal conductivity values from the exponentially
large search space. For this, we explicitly calculate the thermal conduc-
tivities for 1800 unique configurations as reported in Fig. 2(a). For ML
training, we artificially engineer the k,-dataset to ensure equal contri-
butions (150 instances) from all mass ratios (defining the mass-ratio
as the ratio of the number of heavy carbon atoms to the total number
of atoms in the unit cell). This is done so that the model does not
develop a bias toward a particular mass-ratio, consequently affecting
thermal conductivity prediction since k, is dependent on mass of the
atoms [as can be seen from Fig. 2(a)].

Furthermore, since calculated thermal conductivities correspond
to periodic repetitions of the unit cell extending infinitely in the two-
dimensional space, we invoke the translational invariance to augment
the training dataset. We identify 16 translational symmetries, thereby
resulting in a total of 79200 data points in the augmented dataset.
Finally, we divide this k,-dataset in the ratio of 7:3 for training and
testing of the ML models. In the case of neural-network-based ML
models, we also transform the unit cell representation (feature-vector)
from the one-dimensional 32-bit mass vector to a two-dimensional
8 X 4 mass matrix [corresponding to Fig. 1(a)] to take advantage of
this image-like representation of the unit cell.

We start by first testing the performance of the conventional ML
models as implemented in the Python library Scikit-learn.”” As men-
tioned earlier, these models are inadequate for such exponentially large
search spaces; nevertheless, these models are easy to interpret and pro-
vide guidance for design/training of more complex, neural network
based models. The results obtained from these conventional models
are summarized in Fig. 2(b).

With linear regression, using a simple 32-bit mass vector as the
input feature vector, the obtained root mean square error (RMSE) is
100 and 101 W/mK for training and testing datasets. This large value
of RMSE is expected as the thermal conductivity of crystalline materi-
als varies non-linearly with atomic masses (especially, at low tempera-
tures where quantum effects are more pronounced, as is the case for
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graphene-like hypothetical materials considered here at 300 K) as pre-
sented in Fig. 2(a). As is evident from similar train and test RMSEs,
there is no over-fitting in the linear model, and therefore, no improve-
ment in performance is observed with the introduction of L2 and L1
regularizations with Ridge™* (& = 70) and least absolute shrinkage and
selection operator (LASSO)™ (o = 0.023) regression, respectively.

With the introduction of non-linearity in the form of radial basis
function kernel and kernel coefficient (y) equal to “scale” (as defined
in the scikit-learn library) in the support-vector machine,” the train/
test RMSE reduces to 36 W/m K. Further reduction in training error is
observed with a random forest regressor with 100 trees (and by pre-
serving other default settings). However, it is inferred that this is a case
of over-fitting since the test RMSE is more than twice as much as the
train RMSE.

We next switch to neural network based regressors to leverage
their ability to learn and model non-linear and complex relationships.
We test both feed-forward and convolutional neural networks along
with binary and one-hot encoding for carbon and heavy carbon atoms.
We find that even with binary encoding for atomic masses, the per-
formances of feed-forward and convolution networks are superior to
those of the support-vector machine. The binary encoding, however,
misleads the networks by suggesting that subtraction of a light atom
from another heavy atom results in a light atom. To avoid this misrep-
resentation, we adopt one-hot encoding and test the performances
with both feed-forward and convolution neural networks. The
resulting train and test RMSEs are only 7W/mK for both the net-
works. These results are comparable to the performance of the random
forest model but without any over-fitting.

To take advantage of exceptionally low RMSE values realized
using neural-network-based regressors, we next implement autoen-
coders in conjunction with such regressors so as to enable direct sam-
pling of unit cell configurations with desired properties. An
autoencoder consists of an encoder and a decoder. They are designed
to replicate the input at the output. The encoder compresses the input
to a lower-dimensional latent space in the bottleneck layer, while the
decoder reconstructs the output from the latent space. The compres-
sion captures the more important information from the input data
while filtering out the extraneous information. Here, we employ con-
volutional neural networks for the encoder and the decoder and a
feed-forward network for regression along with the one-hot encoding
as is reported in Fig. 3(a).

The 32-bit feature array representing the unit cell configuration
in the dataset is reshaped into an 8 x 4 x 2 array using the one-hot
encoding (ie., a light carbon atom is denoted by [0, 1], while a heavy
carbon atom is denoted by [1, 0]). The thermal conductivity values of
all the configurations in the dataset are normalized using its mean and
standard deviation to ensure stable convergence of weights and biases
in the neural network. We employ a sequence of two convolutional
layers in the encoder, which eventually flattens out to the latent space
of dimension 32. Each of the convolutional layers uses a (4 x 4) kernel
with a random normal initializer and a (1 x 1) stride. The filter sizes
are 16 and eight for the first and second convolutional layers, respec-
tively. The padding is such that the height and the width of the array
remain unchanged. The hyperbolic tangent (tanh) activation is used at
the output of each of the nodes barring the input to the latent space.
The decoder is built by replicating the encoder architecture in reverse.
The feed-forward regressor, consisting of one hidden layer with tanh
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feed-forward regressor, (b) clustering of data points in the latent space of the
autoencoder according to their corresponding thermal conductivity value, k,, and (c)
highest k, sample predictions and the corresponding calculated values using inter-
polation sampling followed by BTE-based calculations for 10 iterations.

activation, predicts the thermal conductivity value. The training is per-
formed to minimize the mean-squared error loss at the decoder and
the feed-forward regressor outputs using the “Adam” optimizer for
500 epochs and batch-size equal to 1024, and equal weights are
assigned to the autoencoder reconstruction and the regressor losses.

Using this autoencoder, the RMSE obtained from the regressor
on the test dataset is 7 W/mK, which is the same as that obtained
from the convolution network. Furthermore, the reconstruction error
obtained from the decoder is 7.07 x 1073, ie, amongst 4.4 re-
constructed configurations of the 32-atom unit cell, only one bit of any
one of the configuration is wrongly reproduced, thus indicating regen-
eration of original configurations from the latent space.

Since the presence of the thermal conductivity regressor regular-
izes the training of the autoencoder, the configurations in the trained
latent space of the encoder are clustered together on the basis of the
material thermal conductivity, k, [as can be seen in Fig. 3(b)]. We
leverage this spatial conditioning of the unit cell configurations in the
latent space to sample new configurations with desired thermal con-
ductivity values. We utilize the interpolation approach for sampling
new materials by choosing points that are a linear combination of any
two known latent space points in the high thermal conductivity
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cluster. The high-k, sampled data points are transformed to the
original unit cell configuration space using the decoder, and the
thermal conductivity of these configurations is predicted by feeding
their latent space representation to the regressor.

We perform this sampling iteratively to find high-k, configura-
tions from intermediate mass ratios in the range of 0.125-0.875. We
start by sampling unit-cell configurations of new hypothetical materi-
als having the mass ratios in this given range. We next choose 30
sampled materials with the highest predicted k, and calculate their
true k, values using explicit BTE based calculations. Next, the model
as in Fig. 3(a) is trained on the augmented dataset including the new
sampled materials, and then, a new set of high-k, materials are sam-
pled. The process is repeated until no further improvement is observed
in the highest-k, of sampled unit cell configurations.

We find that this iterative procedure converges after 10 iterations
to a hypothetical material with the predicted and calculated k, of
564 W/mK. [Fig. 3(c)]. As shown in the inset of Fig. 3(c), this high-k,
material corresponds to a unit cell configuration with superlattice like
stacking of atomic ribbons with a mass ratio of 0.125. This predicted
k, is 44.6% higher than the highest k, in the training dataset in
Fig. 2(a) for the same mass ratio. It is interesting to note that (i) the
thermal conductivity value of the sampled highest k, material (having
four heavy atoms in its unit cell) is 16.5% larger than that of the unit
cell configuration with only one heavy atom and (ii) the ML model is
able to identify this high-k, superlattice-like configuration although no
such configuration is present in the initial training dataset [Fig. 2(a)].

Since we attain a very high k, value for this superlattice-like unit
cell configuration, we hypothesize that such an ordered stacking of light
and/or heavy atomic ribbons could lead to exceptional thermal trans-
port. We calculate the thermal conductivity values of the unit cell con-
figurations with an equal number of light and heavy atomic ribbons
(4 each) stacked alternately in groups of 1, 2, and 4 using the BTE-
based solution. Interestingly, we obtain exceptionally high k, values for
the alternately stacked unit configuration of mass ratio 0.5 (ie., alter-
nate rows of the heavy and light carbon atoms in the unit cell configu-
ration) of 597 W/mK, which even surpasses the sampled highest k,
material. Although this higher k, material shows that the ML-guided
search does not guarantee a global extremum, it demonstrates that the
ML model is able to capture the right thermal transport physics, which
could be used in conjunction with human understanding to accelerate
the search of novel materials with desired material properties. Since
phonon relaxation time due to disorder scattering determines the ther-
mal conductivity of alloys, a similar methodology could be adopted in
future work by setting the relaxation time as the target property.

In summary, using hypothetical graphene-like disordered two-
dimensional materials as the test case, we demonstrate the applicability
of the generative machine learning models to explore massively large
search spaces of alloys/disordered materials for desired thermal prop-
erties. In comparison to conventional ML models, which require an
exponentially large number of model evaluations to scan such search
spaces, the generative ML models expedite materials discovery by
mapping materials to a latent space where they are clustered according
to the target property. This mapped latent space can be sampled to dis-
cover materials with desired target properties. Hence, this ML-guided
framework accelerates the material search many-fold and provides
invaluable insights to steer the exploration toward an optimum
solution.
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