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The effects of exchange–correlation (XC) and pseudopotential types on the density functional theory-
driven prediction of the thermal conductivity of isotopically pure silicon are studied. The thermal con-
ductivity is predicted by considering three-phonon scattering processes and a full solution of the
Boltzmann transport equation. The LDA, PBE, PBEsol, and PW91 XCs predict thermal conductivities
between 127 and 148 W/m K at a temperature of 300 K, which is an under-prediction of the experi-
mental value of 153 W/m K by 3–17%. The BLYP XC predicts a thermal conductivity of 172 W/m K, an
over-prediction of 12%.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The prediction of lattice thermal conductivity from first-
principles-driven density function theory (DFT) calculations is
becoming routine [1–4]. As opposed to using empirical potentials
to describe the atomic interactions, which require fitting parame-
ters and lack true predictive power, DFT-driven calculations are
fitting-parameter free. DFT-driven calculations have been success-
fully used to predict the experimentally-measured thermal con-
ductivities of materials ranging from simple semiconductors such
as silicon [2] and diamond [5] to compound semiconductors [4],
graphene [6], and SiGe alloys [3]. DFT-driven calculations have also
been used to study the effects of strain and isotopes on the thermal
conductivity of semiconductors [7–9] and to predict the thermal
conductivity of novel two-dimensional materials [6,10,11].

Within the framework of DFT, the many-body problem of inter-
acting electrons is reduced to a tractable problem of non-
interacting electrons with an effective potential. This effective
potential includes the effects of the Coulombic interactions (i.e.,
the Hartree term) and many-body interactions [i.e., the
exchange–correlation (XC) term]. The major challenge in DFT lies
in describing the XC. The simplest form of the XC is the local den-
sity approximation (LDA), in which the potential is only a function
of the spatially-dependent electron density [12]. A more involved
approach, the generalized gradient approximation (GGA), uses
the electron density and its gradient. GGA XCs almost always
over-predict the experimental lattice constants of crystalline solids
while LDA XCs almost always result in an under-prediction [13].
The effect of this under-/over-binding by different XCs on lattice
thermal conductivity is unknown.

Thermal transport in semiconducting and electrically insulating
crystalline solids is dominated by lattice vibrations (i.e., phonons).
The thermal conductivity of these materials is therefore highly-
dependent on inter-atomic separation and bonding. Our objective
here is to study the effect of different XCs on the thermal conduc-
tivity of isotopically-pure silicon. We employ LDA and GGA (PBE
[14], PBEsol [15], BYLP [16,17], and PW91 [18]) XC-based ultrasoft
(US), norm-conserving (NC), and projected augmented wave
(PAW) pseudopotentials. We find that all XCs, with the exception
of BYLP, predict a thermal conductivity between 127 and 148W/
m K at a temperature of 300 K, which is an under-prediction of
the experimental value of 153W/m K by 3–17% [19]. BLYP, on
the other hand, over-predicts the experimental value by 12%. In
what follows, we describe the thermal conductivity calculation
details in Section 2 and convergence tests for the DFT calculations
in Section 3. The predictions of the XC-dependence of thermal con-
ductivity are presented in Section 4 and a comparison to results
from the literature is made in Section 5.
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Fig. 1. Variation of (a) total energy and relaxed lattice constant and (b) predicted
thermal conductivity of silicon at a temperature of 300 K with electronic wave-
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2. Thermal conductivity

The phonon contribution to the thermal conductivity of a bulk
crystalline solid in the l direction can be calculated by solving
the Boltzmann transport equation (BTE) iteratively and using the
Fourier law and is [4,20]

kl ¼
X
i

cph;iv2
g;l;isl;i: ð1Þ

The summation in Eq. (1) is over all the phonon modes in the

first Brillouin zone. The mode index, i � j
m

� �
, enumerates phonon

wave vector, j, and polarization, m. On the right-hand side of Eq.
(1), cph;i is the volumetric specific heat, vg;l;i is the l-component of
the phonon group velocity vector vg;i, and sl;i is the phonon life-
time. The phonon volumetric specific heat can be calculated using
the Bose–Einstein distribution as

cph;i ¼ kBx2

V
ex

½ex � 1�2 ; ð2Þ

where x � �hxi=kBT; kB is the Boltzmann constant, �h is the reduced
Planck constant, T is temperature, and V is the system volume. The
group velocity vector is related to the mode frequency, xi � xj

m , as
vg;i ¼ @xj

m=@j. The phonon lifetimes can be estimated using the
inverse of the phonon scattering rate as sl;i ¼ 1

@nl;i=@t
[20–22].
vector grid using the LDA XC-based NC pseudopotential. The total energy in (a) is
energy per atom relative to energy per atom of the 14� 14� 14 electronic wave-
vector grid.
3. DFT parameters convergence

Phonon frequency and lifetime predictions require harmonic
and cubic force constants as inputs. We obtained harmonic force
constants from density functional perturbation theory (DFPT) and
cubic force constants from finite differencing of DFT forces. We
employed the planewave-based electronic-structure calculation
package Quantum Espresso for our DFPT and DFT calculations
[23,24]. The harmonic force constants are initially obtained on an
8� 8� 8 phonon wave-vector grid and are later interpolated to a
24� 24� 24 grid. For the cubic force constants, we calculated
forces on different arrangements of a 216 atom supercell with
one or more atoms displaced by 0:01 Å from their equilibrium
positions. The translational invariance constraint in the calculation
of the cubic force constants was enforced using the Lagrangian
approach presented by Li et al. [25]. The convergence of the ther-
mal conductivity of silicon with respect to supercell size and dis-
placement amount is discussed in Ref. [4]. We found that the
change in thermal conductivity at a temperature of 300 K is less
than 1.5% when increasing the phonon wave-vector grid from
24� 24� 24 to 26� 26� 26. Since we want our results to be con-
verged within 2% (the experimental uncertainty in the thermal
conductivity of silicon [19]), we used the 24� 24� 24 phonon
wave-vector grid for all of our calculations. The phonon scattering
rates in the present study are obtained using an iterative solution
of the BTE. The iterative solution, as opposed to the commonly-
used relaxation time approximation (RTA), does not treat normal
three-phonon scattering processes as resistive [1,26].

To specify the converged electronic wave vector grid (to be used
in the self-consistent field calculation), we plot the variation of the
total energy, the relaxed lattice constant, and the thermal conductiv-
ity at a temperature of 300 K with electronic wave-vector grid den-
sity in Fig. 1(a) and (b) for the LDA XC-based NC pseudopotential
with a 60 Ry planewave energy cutoff. As can be seen in Fig. 1(b),
the thermal conductivity decreases by 7% on increasing the elec-
tronicwave-vector grid from6� 6� 6 to 8� 8� 8 and is converged
to within 1.5%with further increase. The 7% decrease in the thermal
conductivity in going from the 6� 6� 6 wavevector grid to the
8� 8� 8 wavevector grid is mainly a result of differences in the
vibrational frequencies. For example, the transverse (longitudinal)
acoustic phonon group velocities close to the Gamma point in the
[100] direction decrease from 4806 m/s (7871 m/s) to 4653 m/s
(7558 m/s). The changes in the total energyper atomand the relaxed
lattice constant (Fig. 1(a)) are less than 0:2 mRy and 0:001 Åwith an
increase in an electronic wave-vector grid beyond 8� 8� 8. These
results suggest that the total energy per atom and the lattice con-
stant should be converged to within 0:2 mRy and 0:001 Å in order
to achieve a converged thermal conductivity for silicon (within
2%). We note that the 7% variation in the thermal conductivity with
electronicwavevector grid is not simply because of the change in the
lattice constant. We performed thermal conductivity calculations
using lattice constants between 5.40 and 5.46 Å while keeping the
electronic wavevector grid and planewave energy cutoff fixed and
found the variation to be less than 4%.

We repeated the above convergence calculations for all the XCs
with the criterion of thermal conductivity changes of less than 2%.
The converged electronic wave-vector grid obtained for all XCs and
pseudopotential types is 8� 8� 8. For the planewave energy cut-
off, we find convergence at 50 Ry for US and PAW pseudopotentials
and 60 Ry for NC pseudopotentials for all of the XCs considered. To
see the effect of electronic wavevector grid on the supercell DFT
forces (used for both the phonon lifetimes and the Grüneisen
parameters), we calculated thermal conductivity using the
Gamma point supercell and a supercell with a 2� 2� 2 wave vec-
tor grid for the LDA XC-based NC pseudopotential. The difference
in the two thermal conductivities is 2%, which is within our con-
vergence threshold.

4. Results

4.1. Lattice constant

We report the relaxed lattice constants in Table 1. The experi-
mental value is 5:430 Å [27]. All GGA XCs under-bind the lattice
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and over-predict the lattice constant while the opposite is true for
the LDA XC, which underpredicts by 0.6%. The PBEsol XC-predicted
lattice constant (5:430 Å) shows the best agreement with the
experimental value while the BLYP XC over-predicts the experi-
mental value by the highest amount (1.4%). The PBE and PW91 lat-
tice constants are within 0.7% of the experimental value for the
three types of pseudopotential considered.

4.2. Phonon dispersion

We plot the phonon dispersion calculated using the PBEsol (US)
and BLYP (NC) XCs in Fig. 2(a). As mentioned in Section 4.1, the
PBEsol and BLYP predicted lattice constants show the best and
worst agreement with the experimental value. The transverse
acoustic phonon vibrational frequencies predicted using PBEsol
(green lines) are lower than the experimental values (blue circles
[28]), whereas those predicted using BLYP (red lines) are higher.
For longitudinal acoustic phonons, both PBEsol and BLYP predict
similar vibrational frequencies. In the case of optical phonons,
the PBEsol predicted frequencies agree well with the experiments
whereas BLYP results in an under-prediction. The sound velocities
(estimated as the longitudinal acoustic phonon velocity close to
the C-point in the [100] direction) from the PBEsol (8330 m/s)
and BLYP (8510 m/s) XCs both compare well with the experimental
value of 8430 m/s [30].

The sound velocities obtained using the different XCs and pseu-
dopotential types are provided in Table 1. PW91 underpredicts the
sound velocity compared to the experimental value by the maxi-
mum amount (5970 m/s, a difference of 29%). The sound velocities
predicted from the other XCs and pseudopotential types are within
11% of the experimental value. The sound velocity of a one-

dimensional harmonic mass-spring chain in solids is a
ffiffiffi
K
m

q
, where

a;K; and m are the lattice constant, the harmonic spring constant,
and the atomic mass. In examining Table 1, we note that there is
not a direct correlation between the sound velocities and the lat-
tice constants. For example, for the LDA XCs, the predicted sound
velocities are 8320, 7560, and 8340 m/s from the US, NC, and
PAW pseudopotentials even though all predicted lattice constants
are within 0.002 Å of each other. This finding points to the impor-
tant effect of the XC on the harmonic force constants.

4.3. Three-phonon phase space

Differences in the phonon dispersions from the different XC and
pseudopotential types result in different values of the three-
phonon phase space, which is a measure of the scattering space
available for three-phonon processes. It is calculated using the
phonon dispersion by counting the number of three-phonon scat-
tering processes that satisfy the energy and momentum conserva-
tion selection rules [31]. The three-phonon phase spaces obtained
from the different XC and pseudopotential types are provided in
Table 1. The minimum phase spaces are obtained from BLYP and
PW91, with values of 0.0085 and 0.0089. All other XC and pseu-
dopotential types predict values between 0.0091 and 0.0093.
These results indicate a smaller number of three-phonon scattering
processes from the BLYP and PW91 XCs as compared to the other
XCs. We note that the strength of these three-phonon scattering
processes depends on the cubic force constant and is discussed
in Section 4.4.

4.4. Grüneisen parameters

To examine the effect of XC and pseudopotential types on the
cubic force constants, we next plot mode-dependent Grüneisen
parameters, ci, calculated using the PBEsol (NC) and BLYP (US)
XCs in Fig. 2(b). The Grüneisen parameters describe the effect of
changing the crystal volume on the phonon frequencies and are a
measure of crystal anharmonicity. We calculated the Grüneisen
parameters with the cubic force constants by using Eq. (2) of Ref.
[32]. For transverse acoustic phonons, PBEsol results in an over-
prediction (in magnitude) of the experimentally measured
Güneisen parameter [29] at all of the high-symmetry points con-
sidered. BLYP, on the other hand, matches the experimental values
at C and W , while under-predicting (in magnitude) at X and L by a
factor of two. The Grüneisen parameters for the transverse acoustic
phonons from BLYP are smaller in magnitude (less than half in
some cases) than the corresponding values from PBEsol over the
entire Brillouin zone. This result suggests weaker anharmonic scat-
tering of transverse acoustic phonons from BLYP compared to
PBEsol. For longitudinal acoustic and optical phonons, except for
the C� L direction, the BLYP- and PBEsol-predicted Grüneisen
parameters match with each other in all high-symmetry directions.
Both the BLYP- and PBEsol-predicted Grüneisen parameters match
with the experiments at all of the high-symmetry points for longi-
tudinal acoustic and optical phonons.

We characterize the anharmonicity of the different XCs by cal-
culating an average Grüneisen parameter, c, as a heat-capacity
weighted average of the absolute values of the mode-dependent
Grüneisen parameters as:

c �

X
i

cph;i cij j
X
i

cph;i
: ð3Þ

The average Grüneisen parameters are provided in Table 1. The
minimum value of 0.89 (i.e., the least anharmonic) is obtained
from the BLYP XC. All other XCs and pseudopotential types result
in average Grüneisen parameter values between 1.00 and 1.11.

4.5. Thermal conductivity

Thermal conductivities at a temperature of 300 K calculated
using the different XC and pseudopotential types are provided in
Table 1. The maximum and minimum predicted thermal conduc-
tivities are 127W/m K (from PW91) and 172W/m K (from BLYP).
All other XCs predict values between 137 and 148W/m K, which
is an under-prediction of the experimentally-measured thermal
conductivity of isotopically pure silicon of 153W/m K [19] by 3–
11%. As can be seen from Eq. (1), thermal conductivity is propor-
tional to the phonon group velocities squared and the lifetimes.
The strong under-prediction of the sound velocity by PW91
(Section 4.2) is consistent with its low thermal conductivity. For
BLYP XC, the three-phonon phase space and average Grüneisen
parameter are lower than the other XCs. These lower values of
the three-phonon phase space and average Grüneisen parameter
are an indication of weaker phonon–phonon scattering, larger pho-
non lifetimes, and hence higher thermal conductivity. Apart from
the XC and pseudopotential types, the predicted thermal conduc-
tivities also depend on the pseudopotential generation method,
as found by Ward for diamond [33]. We find the predicted thermal
conductivities from the LDA XC based NC pseudopotentials gener-
ated using the Goedecker–Hartwigsen–Hutter–Teter [34,35],
Martins–Troullier [36], and Von Barth-Car [37] methods to be
130, 134, and 144W/m K.

The thermal conductivity accumulation function with phonon
mean free path (defined as sijvg;ij) at a temperature of 300 K from
the different XC and pseudopotential types is plotted in Fig. 3. The
accumulation function describes the contribution of different
mean free path phonons towards the thermal conductivity [38].
As can be seen from Fig. 3, phonons with mean free paths varying
over three orders of magnitude (10 nm to 10 lm) contribute to



Table 1
Predicted relaxed lattice constant, sound velocity, three-phonon phase space, mode-averaged Grüneisen parameter, and phonon thermal conductivity (isotopically pure at
T = 300 K) of silicon with different XCs and pseudopotential types. The thermal conductivities are converged to within 2% with respect to all simulation parameters.

Pseudopotential
type [24]

Exchange
correlation [24]

Lattice
constant (Å)

Sound velocity
(m/s)

Three-phonon phase space
(arbitrary units)

Average Grüneisen
parameter

Thermal conductivity
(W/m K)

Experiment 5.430 [27] 8430 [30] 153 [19]
Ultrasoft LDA 5.399 8320 0.0091 1.11 142

PBE 5.468 8120 0.0092 1.04 148
PBEsol 5.430 8330 0.0092 1.10 140
PW91 5.466 5970 0.0089 1.00 127

Norm-conserving LDA 5.402 7560 0.0092 1.04 144
PBE 5.461 8150 0.0093 1.02 148
BLYP 5.505 8510 0.0085 0.89 172

PAW LDA 5.400 8340 0.0091 1.11 142
PBE 5.466 7830 0.0092 1.03 145
PBEsol 5.430 8320 0.0092 1.11 137
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thermal transport. As compared to the other XCs, which show sim-
ilar accumulations, BLYP over-predicts the contribution of the mid-
range mean free path (�100 nm) phonons.

The temperature variation of the thermal conductivity of silicon
between 100 and 500 K from different XC and pseudopotential
types is plotted in Fig. 4. Also plotted are the experimentally-
measured thermal conductivities from Inyushkin et al. [19] (green)
and Glassbrenner and Slack [39] (red). BLYP over-predicts the
experimental thermal conductivity at all of the temperatures con-
sidered. At a temperature of 100 K, BLYP predicts a value of
1326W/m K, while all other XC and pseudopotential types predict
values between 993 and 1239W/m K. The experimental values at a
temperature of 100 K are 1194 and 950W/m K from Refs. [19,39].
5. Comparison with literature

We now compare our predictions with reported values in liter-
ature. The results are summarized in Table 2. As a comparison
point, our converged value of thermal conductivity using the LDA
XC based NC pseudopotential is 144W/m K using the iterative
solution of the BTE and 140 W/m K when the BTE is solved under
the RTA.

Lindsay et al. [4] predicted a value of 155 W/m K using an iter-
ative solution of the BTE. They used the LDA XC based NC pseu-
dopotential with a 6� 6� 6 electronic wavevector grid and a 80
Ry planewave energy cutoff. Using the same parameters, our pre-
dicted thermal conductivity is 153 W/m K [42]. As can be seen
from Fig. 1(b), an electronic wavevector grid of 6� 6� 6 is not con-
verged and leads to a 6% over-prediction in the thermal conductiv-
ity compared to an 8� 8� 8 wavevector grid.

Esfarjani et al. [2] predicted a value of 132W/m K using the LDA
XC and the RTA of the BTE. They used a 40 Ry planewave energy
cutoff and 10 electronic wavevectors in the irreducible Brillouin
zone (4� 4� 4 wave-vector grid) of a 64 atom supercell. They
used a 18� 18� 18 phonon wavevector grid for the thermal con-
ductivity calculation [43]. These choices lead to an under-
prediction of thermal conductivity (compared to finer phonon
wavevector grids) due to insufficient sampling of phonon modes
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near the Brillouin zone center [2,44]. Using the LDA XC based NC
pseudopotential and their parameters we predict a thermal con-
ductivity of 136W/m K.

The thermal conductivity predicted by Garg et al. [40] is 136
(132) W/m K using the full (RTA) solution of the BTE. They used
the LDA XC-based NC pseudopotential with an 8� 8� 8 electronic
wavevector grid and a 20 Ry planewave energy cutoff. With the
same parameters, we predict thermal conductivities of 140 (136)
W/m K. These value are an under-prediction of our converged val-
ues by 4 W/m K (for both cases) due to an insufficient planewave
energy cutoff.

Li et al. [41] predicted the thermal conductivity of silicon to be
172W/m K using an iterative solution of the BTE and the PBE XC
based PAW pseudopotential. They used a 23 Ry planewave energy
cutoff and calculated harmonic (cubic) force constants on a
5� 5� 5 (3� 3� 3) supercell using C-point DFT calculations.
The harmonic force constants calculated on a 5� 5� 5 supercell
using C-point DFT calculations are equivalent to those from DFPT
calculations with 5� 5� 5 phonon and electronic wavevector
grids. Using the PAW XC based PBE pseudopotential, 5� 5� 5 pho-
non and electronic wavevector grids in the DFPT calculations, and a
3� 3� 3 supercell for DFT force calculations, we obtain a thermal
conductivity of 140W/m K, which differs from prediction of Li
Table 2
Comparison of isotopically-pure silicon thermal conductivity predictions at a temperature

Relevant/Unconverged simulation parameters

Present study Iterative (RTA) solution of the BTE with LDA NC pseudopotent
vector grid, 60 Ry planewave energy cutoff, and 24� 24� 24

Lindsay et al. [4] Iterative solution of the BTE with 6� 6� 6 electronic wave-v
Esfarjani et al. [2] RTA solution of the BTE and 18� 18� 18 phonon wave-vecto
Garg et al. [40] Iterative (RTA) solution of the BTE and 20 Ry planewave ener
Li et al. [41] Iterative solution of the BTE with 5� 5� 5 supercell based C

harmonic force constants using PBE based PAW pseudopotent
Parrish et al. [9] Iterative solution of the BTE with 6� 6� 6 electronic wave-v
Broido et al. [1] Iterative solution of the BTE with LDA based US pseudopotent
Ward et al. [33] Iterative solution of the BTE with BHS-based NC pseudopoten
et al. by 32W/m K. We hypothesize that Li et al.’s use of DFT forces
to extract the harmonic force constants (as opposed to the more
accurate DFPT calculations in the present study) is responsible
for this difference between the two results.

Parrish et al. [9] predicted a thermal conductivity of 151W/m K
using an iterative solution of the BTE, the LDA XC based NC pseu-
dopotential, and a 80 Ry planewave energy cutoff with a
6� 6� 6 electronic wavevector grid. This value is an over-
estimate of our converged value by 5% due to an insufficient elec-
tronic wavevector grid.

The thermal conductivity of silicon has also been predicted by
Broido et al. [1] and Ward et al. [33]. Their values are 155 and
145W/m K using LDA-based US and Bachelet-Hamann-Schlüter
(BHS)-based NC pseudopotentials. Because the DFPT phonon
wavevector grid for the harmonic force constant calculation is
not provided in Ref. [1] and the BHS based NC pseudopotential in
not available in Quantum Espresso [23], we are unable to compare
our prediction methodology with theirs.
6. Summary

We studied the effect of DFT parameters and XC and pseudopo-
tential types on the thermal conductivity of isotopically pure sili-
con. We found that the total energy per atom and relaxed lattice
constant should be converged to within 0.2 mRy and 0.001 Å with
respect to all DFT parameters in order to have a 2% convergence in
the thermal conductivity. Furthermore, we identified that with the
exception of BLYP (which over-predicts by 12%), all other XCs
under-predict the experimental thermal conductivity by 3–17%
at a temperature of 300 K.

Our conclusions are for isotopically pure silicon. We recom-
mend a careful selection of XC and pseudopotential types for other
materials by initially checking the sound velocity and Grüneisen
parameters, which can both be obtained with harmonic-level cal-
culations. While some XCs such as LDA and PBE are developed
for condensed matter, other XCs are developed for chemical energy
calculations of molecules (e.g., BLYP). We also recommend a care-
ful convergence of thermal conductivity with all DFT parameters,
especially electronic wave-vector grid and planewave energy
cutoff.
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