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a b s t r a c t 

The effective medium theories (EMTs) can reliably approximate the property of a composite using proper- 

ties of the inclusion and matrix phase. However, their inherent assumptions and the availability of math- 

ematical forms for describing the inclusion structure limit their accuracy and applicability. In this work, 

we utilize the capabilities of a deep learning method to ameliorate the latter restriction for a particular 

EMT formulation. Our deep learning models elucidate the inclusion structure using several physics-based 

descriptors and can be easily adapted for other inclusion shapes through transfer learning. Using our 

models, we shed light on the interpretation of the shape factor in the chosen EMT. More importantly, we 

extend, not replace, the EMT for cases beyond its original formulation. Our proposed transfer learning ap- 

proach requires relatively low computation cost and a small sample number, making it especially useful 

when new data is limited. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The effective medium theory (EMT) is an analytical mean-field 

pproach suitable for estimating various properties of a compos- 

te in many engineering and scientific fields [1–10] . In the ther- 

al transport field, EMT is frequently employed as a first approx- 

mation to elucidate the thermal conductivity ( K) results in exper- 

ments and simulations [11–18] . Its popularity over other meth- 

ds (e.g., numerical simulations [19–21] ) stems from its fast and 

easonably accurate estimates while providing some physical in- 

ights. It also requires only relatively simple inputs like the ther- 

al conductivity of the matrix ( K m 

) and inclusion ( K p ) phases and

olume fraction ( f ) of the inclusion phase. Its prediction accuracy, 

owever, depends on its assumptions and the inclusion structures. 

any of such EMTs are weighted combinations of five basic struc- 

ural models [22,23] . Common in these models is a ubiquitous fac- 

or called the shape factor that accounts for the inclusion structure 

n the composite. For the same composite, this factor can have a 
∗ Corresponding author. 
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ifferent value in different EMTs and couples to K m 

, K p , and f in

 complex and non-intuitive manner. Also, its physical interpreta- 

ion is of ongoing scientific interest [22,23] and is suggested to be 

elated to the number of Euclidean dimensions of the composite 

r the sphericity of the inclusion phase [24,25] . Advances in recent 

anufacturing technology can create many inclusions of complex 

hapes that enhance properties of a composite, including those for 

hermal transport [26–28] . Thus, an in-depth study of this factor 

ill be beneficial for advancing the use of EMTs in meeting these 

ew engineering demands. 

Deep learning techniques have attracted recent interest for 

lucidating thermal transport problems at various length-scales 

21,29–39] . The multilayer perceptron (MLP) model is one such 

eep learning technique that is inspired by the neural connections 

n a human brain [40–42] . The resulting network is used to clas- 

ify new observations (i.e., as a classifier) or discover complex hid- 

en input-output relationships for multi-variate predictions (i.e., 

s a regressor) and has been successfully employed in various 

hermal transport studies [32,33,43] . To date, most deep learning- 

ased studies have focused on discovering intricate inputs-to- 

hermal-transport relationships using data collected from experi- 

ents and/or simulations. In this work, we utilize the deep learn- 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.122305
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
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Nomenclature 

K effective thermal conductivity 

Km thermal conductivity of the matrix phase 

K p thermal conductivity of the inclusion phase 

f volume fraction of the inclusion phase 

p aspect ratio 

K F EM 

thermal conductivity computed by finite element 

K EMT thermal conductivity computed by EMT 

K MLP thermal conductivity computed by machine learn- 

ing model 

L ii geometrical factors dependent on the particle shape 

a i length of axes of ellipsoid 

V volume 

S surface area 

F P ro front projected area 

T P ro top projected area 

RP ro right projected area 

ng techniques in another manner for another purpose. Instead 

f learning from experimental and simulation data to regress an 

nput-output relationship, we employ the MLP model to investigate 

he physical meaning of the shape factor in an EMT and extend the 

MT applicability beyond its original formulation. Our learning set, 

hus, comes from the analytical EMT equation, while our output is 

n improved EMT with broader applicability. The chosen EMT is a 

ommonly used three-dimensional (3D) two-component equation 

hat considers ellipsoidal inclusions. Such inclusions have a shape 

actor that is related to its mathematically definable aspect ratio, p

23] . We first train an MLP-based K-model with the K values cal- 

ulated from this EMT equation. This approach allows us to obtain 

s much learning data as possible but with an accuracy limited by 

he EMT assumptions. Next, we introduce five physics-based shape 

escriptors to decompose and elucidate the shape factor by train- 

ng another MLP-based p-model. Using this trained p-model, we 

xtend the chosen EMT to calculate the K values for other inclu- 

ion shapes using transfer learning. The accuracy of these K pre- 

ictions is evaluated against the solutions from a 3D heat diffusion 

quation solved using the finite element method. Our results sug- 

est that we have successfully extended the original EMT to other 

nclusion shapes through transfer learning by modifying the shape 

actor. We also found that the ratio of the inclusion’s projected ar- 

as is related to this shape factor. 

The rest of this paper is organized as follows: Section 2 contains 

he descriptions of our methods and the tools used. Results from 

ur deep learning models, the EMT, and the finite element models 

FEMs) are compared and discussed in Section 3 before concluding 

n Section 4 . 

. Methodology 

The overall system architecture and investigation steps are 

hown in Fig. 1 . Briefly, the selected analytical EMT formulation for 

llipsoidal inclusions was used to generate the training and valida- 

ion sets for the MLP-based K -model and p-model. The K -model 

ses input descriptors that are identical to the input parameters of 

he EMT. A well-trained K-model should, thus, predict a thermal 

onductivity value (i.e., K MLP ) similar to that of the EMT (i.e., K EMT )

or the same composite system. The p-model was trained using el- 

ipsoidal inclusions to predict a p value for use in the EMT. The 

nput descriptors for this model were derived from physics-based 

arameters that can influence heat transfer. This p-model was later 

sed for transfer learning to generate p values for inclusion shapes 

ith no analytical p. Data for transfer learning was generated using 
2 
he FEM approach. With these p values, both the K EMT and K MLP 

ere obtained and compared with the thermal conductivity results 

alculated from the FEM approach (i.e., K F EM 

). Details of the indi- 

idual steps are presented below. 

We investigated the macroscopic thermal conductivity of 3D 

wo-component composites with randomly oriented inclusions of 

dentical shape and size. Here, the classical heat diffusion equation 

nvolving the Fourier law [44] can be solved without considering 

ny size effects [20,31] . In addition, our study does not include 

ases where the interfacial thermal conductance between the ma- 

rix and inclusion phases is critical. The K of these 3D compos- 

tes were obtained using three different approaches: 1) the EMT 

ormulation ( Eq. 1 ) [22,23] that was used to generate the train- 

ng data for our MLP models, 2) our proposed MLP-based mod- 

ls ( Fig. 2 ) for studying and extending that EMT and 3) a finite-

lement model that acted as the gold standard for comparison. The 

omputational efficiency, model generalizability, and prediction ac- 

uracy for each of these approaches are briefly discussed in the 

upplementary Material Section S1. 

.1. The EMT model 

The chosen EMT formulation is originally derived by Nan et al. 

23] for a composite containing randomly orientated ellipsoids. 

ere, 

 = K m 

3 + f [2 β11 (1 − L 11 ) + β33 (1 − L 33 )] 

3 − f [2 β11 L 11 + β33 L 33 ] 
(1) 

here K is the effective thermal conductivity. The shape factors L ii 
re dependent on the inclusion shapes, with 

L 11 = L 22 = 

⎧ ⎨ 

⎩ 

p 2 

2 ( p 2 −1 ) 
− p 

2 ( p 2 −1 ) 
3 / 2 cos h 

−1 p, for p > 1 , 

p 2 

2 ( p 2 −1 ) 
+ 

p 

2 ( 1 −p 2 ) 
3 / 2 co s −1 p, for p < 1 , 

 33 = 1 − 2 L 11 . (2) 

or an ellipsoid, p = a 3 /a 1 . Here, ellipsoids with two axes of equal

ength are used as the inclusion, i.e. a 1 = a 2 (see Fig. 1 ). βii are

ntermediate variables defined as: 

ii = 

K p − K m 

K m 

+ L ii (K p − K m 

) 
, (3) 

As evident from the above three equations, p is related non- 

rivially to the shape factor. Eq. 1 was used to generate data for 

raining and validating our K-model. 

.2. MLP-based machine learning model 

We built two types of MLP models: 1) the K-model for learning 

he EMT formulation, and 2) the p-model to capture the relation- 

hip between our proposed shape descriptors and the effective p

n Eq. 2 . Their architectures are presented in Fig. 2 . We used ma-

hine learning to learn the variable p instead of the variable L ii in 

q. 2 as the former can be more easily generalized to other shapes 

nd applied in other EMT formulations. The p-model is essential 

or understanding the physical meaning of the shape factor and 

xtending the EMT to other shapes through transfer learning. Our 

LP regressor was implemented using the scikit-learn library of 

ython [45] . The multiple layers of neurons in the MLP network 

ere connected and activated by the non-linear ReLU function to 

nable non-linear regression [46,47] . Each connection was weighed 

y a parameter optimized by minimizing the mean square error 
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Fig. 1. The overall methodology and work flow. 

Fig. 2. The architectures of our MLP models: (a) K-model; (b) one of the three p-models. The other p-models are included in the Supplementary Material Section S2. The 

number below each hidden layer represents the number of neurons in that layer. 
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etween the pairs of targeted and predicted values in the train- 

ng set. Details for optimizing such MLP models can be found in 

ef. [33] . 

We quantified the results from our MLP-models using three 

valuation metrics: a) the Pearson correlation coefficient, b) the 

oot mean squared error (RMSE), and c) the relative root mean 

quared error (RRMSE). The Pearson correrlation coefficient mea- 

ures the linear correlation between two variables and is bounded 

etween −1 to 1. A value of 1 (-1) implies a perfect positive (neg-

tive) linear correlation between the variables, while a value of 

 indicates no linear correlation [48] . The RMSE, shown in Eq. 4 ,

easures the quality of fit for a model. If the predictions ( pred i )

re very close to the targets ( target i ), the RMSE will be small. If

ome of the predictions and targets differ substantially, the RMSE 

ight become large. A perfect fit between the predictions and tar- 

ets will result in a zero RMSE. When an RMSE is normalized, the 

RMSE is obtained. In this work, the mean value of the data set 

as used for normalizing. This metric allows for fair comparisons 
s

3 
etween data sets or models with different scales. 

MSE = 

√ 

1 

n 

n ∑ 

i =1 

(target i − pred i ) 2 (4) 

.2.1. The K-model trained to reproduce K values from the EMT 

The K-model shown in Fig. 2 a was trained using the Adam op- 

imizer [49] . It has four input descriptors, five hidden layers, and 

ne output node. Further details can be found in the Supplemen- 

ary Material Section S2. 

.2.2. The p-model for capturing the inclusion’s shape factor 

The shape factor is ubiquitous in many different EMT formula- 

ions, indicating its importance for estimating K. Its physical in- 

erpretation, however, is an ongoing research question [22] . We 

ttempt to shed light on this question by using several physics- 

ased shape descriptors that can be obtained for most 3D inclu- 

ions. These descriptors were chosen based on the Occam’s razor 



H. Lu, Y. Yu, A. Jain et al. International Journal of Heat and Mass Transfer 184 (2022) 122305 

Fig. 3. (a) Histograms of the absolute and relative differences between the K predicted using the K-model and the EMT. (b) Comparison of the K predictions using the EMT 

and the K-model with the FEM results. An exact match between a K prediction and a FEM result will fall on the y = x line in this figure. Note: K on both axes are normalized 

by the associated matrix phase thermal conductivity, i.e., K = K/K m to amplify any small differences at small K m values. 
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rinciple. We tested the simplest descriptors related to the heat 

ransfer process first. These descriptors are the 

1. volume of an inclusion ( V ), 

2. surface area of an inclusion ( S), 

3. inclusion projected areas ( F P ro, T P ro, and RP ro) 

An inclusion volume ( V ) contributes to its volume fraction in 

he composite. A larger inclusion volume fraction usually indicates 

 larger influence on the heat transfer process. A larger surface 

rea ( S) of an inclusion allows for more contacts between the in- 

lusion and the surrounding matrix, increasing the heat transfer. 

his descriptor and V help to differentiate shapes with different 

urface-to-volume ratios. The projected areas ( F P ro, T P ro, and RP ro,

ee Fig. S6 of the Supplementary Material) are the cross-sectional 

reas perpendicular to the three principal heat flow directions, as 

efined in the 3D Fourier law. To avoid possible ambiguity aris- 

ng from the positioning of an object, we assigned the biggest pro- 

ected area as F P ro, the second biggest one as T P ro, and the re-

aining as RP ro. Inclusions of different shapes and sizes were gen- 

rated according to the orientations shown in Fig. 1 for training 

he p-model. 

We investigated three different p-models to identify the crit- 

cal descriptors for the shape factor. The architecture of one of 

he three p-models is shown in Fig. 2 b. All p-models were first 

rained using ellipsoids and used for transfer learning to three 

ther shapes (see insets in Fig. 1 ). For shapes that do not have

athematically definable p values (needed for transfer learning), 

e employed the maximum likelihood estimate approach to obtain 

hem. Details for training the p-models and the subsequent trans- 

er learning procedure are in the Supplementary Material Sections 

2 and S3. 

.3. The FEM approach for thermal conductivity predictions 

The FEM analysis is the gold standard for analyzing macroscopic 

hermal transport numerically [22] . Its drawback includes heavy 

omputation resources and long computation time. Our FEM model 
4 
s a 5 × 5 × 5 cuboid with each unit cube containing a randomly 

riented inclusion. Details of our FEM implementation are in the 

upplementary Material Section S4. 

. Results and discussion 

.1. Comparison of K predictions with FEM results 

The validation result for the K-model in Fig. 3 a exhibits the 

haracteristics of a well-trained model. 99% of the K MLP have an ab- 

olute difference below 0.04 W/(m �K) while 97% are within a rela- 

ive difference of 0.02 from the K EMT . We also calculated the K F EM 

f 147 different com posites with randomly oriented ellipsoidal in- 

lusions using the FEM approach. Fig. 3 b shows that a majority of 

he K EMT and K MLP is within 10% of K F EM 

. This close agreement sug- 

ests that the transport physics captured in the EMT equation is 

imilar to that in the FEM approach. 

.2. Shape descriptors 

As explained in Section 2.1 , the shape factor of an ellipsoid is 

elated to its analytically definable aspect ratio, p. As a first ap- 

roach to elucidate the physical meaning of the shape factor, we 

alculated the Pearson correlation between p and our five shape 

escriptors proposed in Section 2.2.2 . 

These correlations were calculated using more than 900 ran- 

omly generated ellipsoids. The worst and best correlation result 

re shown in Figs. 4 a and 4 b. Correlation results for all five de-

criptors are included in the Supplementary Material Section S5 for 

ompleteness. As seen from these figures, none of these five simple 

escriptors correlates well with p. Instead of proposing new de- 

criptors, we tested if combining some of these descriptors could 

mprove the correlation score. Results from two such manual com- 

inations are plotted in Figs. 4 c and 4 d. Given that two axes of our

llipsoids are identical and p = a 3 /a 1 , an appropriate ratio of the 

rojected areas should show a strong correlation with p. As seen 

n Fig. 4 (d), the correlation for the ratio T P ro/RP ro with p is strong
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Fig. 4. The (a) worst and (b) best Pearson correlation with p for our five descriptors. (c) and (d) show the Pearson correlation from certain combinations of our descriptors. 
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formulation. 
hen p > 1 but is undefined when p < 1. This behavior arises from

ow we defined our descriptors. Nevertheless, it is clear that cer- 

ain combinations of our descriptors can better capture the char- 

cteristics of p. As manual testing requires a lot of time and effort, 

e built three MLP-based p-models to assist in discovering better 

orrelations. 

.3. The shape factor model ( p-model) 

The three different p-models were trained with more than 900 

housand ellipsoids and validated with a separate set of one thou- 

and ellipsoids. The descriptors for these p-models and their scores 

or the different evaluation metrics are tabulated in Table 1 . The 

orresponding scores for the ratio T P ro/RP ro are included for com- 

arison. As seen from Table 1 , the predictions from all three p- 

odels exhibit excellent correlation with the analytical p, with low 

MSE and RRMSE values. These values are also better than those 

btained from the ratio T P ro/RP ro. An example of the correlation 

nd the absolute difference is plotted in Fig. 5 using results from 
5 
he 2-input p -model. Similar to the results in Table 1, Fig. 5 a de-

icts an almost perfect Pearson correlation coefficient, indicating 

hat our p-model can reliably estimate the analytical p value for 

p > 1 (needle-like) or p < 1 (disc-like). The absolute differences 

etween its predictions and the analytical p values are less than 

.10 for 99% of the data ( Fig. 5 b). 

Results from our p-models indicate that a combination of de- 

criptors can have a high positive correlation with p even though 

he correlation of an individual descriptor is not high. Interest- 

ngly, the simplest 2-input p-model has the lowest RMSE value. It 

s more than five times smaller than those from the more com- 

lex 3-input and 5-input p-model. More descriptors, thus, may 

ot be better and can degrade the performance. The ratios of the 

rojected areas in the 2-input model are sufficient to fully cap- 

ure the shape factor of an inclusion, alluding to the close re- 

ationship between these ratios and the shape factor. Neverthe- 

ess, the success of all three p-models allows us to decompose 

ew shapes for extending the chosen EMT beyond its original 
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Fig. 5. (a) The p values of ellipsoids calculated from the analytical equation ( Eq. 2 ) versus those predicted from the p-model. (b) The distribution of the absolute difference 

in the p values between the p-model and the analytical equation. 

Table 1 

Comparison of the various p-models. 

Model Type Descriptors Pearson Correlation RMSE RRMSE 

Ratio T P ro/ RP ro 0.983 ∗∗ 0.412 27.8% 

2-input p-model T P ro/ F P ro, F P ro/ RP ro 0.999 0.037 2.55% 

3-input p-model F P ro, T P ro, RP ro 0.993 0.198 13.4% 

5-input p-model S, V , F Pro, T Pro, RPro 0.993 0.209 14.1% 

∗∗For p > 1. 
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.4. Transfer learning to predict the p of other inclusion shapes and 

he K for such composites 

Using our trained p-models, we extended the applicability of 

he EMT to composites with inclusions of unknown shape factors. 

he concept behind this is we approximated a new shape as an 

llipsoid to obtain its effective p value for use in the EMT. Given 

hat our p-models were trained using ellipsoids, they might not 

ive the best p estimate for another shape. We, thus, exploited the 

LP’s adaptability for transfer learning to increase the accuracy of 

hese p-models [50] . Transfer learning allows us to perturb and 

ne-tune these p-models using a relatively small number of sam- 

les. This property is advantageous for hard-to-obtain data and re- 

uces computation time. As only a small number of data is needed, 

e used the more accurate FEM method to generate the required 

ata for transfer learning. Composites with inclusions having the 

hape of a cone, torus, and cuboid were studied. Details of this 

ransfer learning process are discussed in the Supplementary Ma- 

erial Section S3. 

The p values for 40 independent samples of each new shape 

ere predicted using the original and the transfer learning 2-input 

p-model. The corresponding K EMT and K MLP from these p values 

ere calculated and compared to the K F EM 

in Figs. 6 a and 6 b. Also

ncluded in these figures is the comparison of the K calculated 

sing the ratio T P ro/RP ro with the K F EM 

. In addition, we divided

ach figure into five equal sections along the x-axis and added the 

RMSE of these three approaches in each section as bar charts. 

rom these results, it is clear that these RRMSEs are quite low, with 

he lowest value coming from the transfer learning p approach. It 

s noteworthy that most of the predicted K are within 5% of the 

 F EM 

, with the K EMT being slightly more accurate than the K MLP . 

his level of accuracy is as good as or better than most recent 
6 
achine learning-based thermal conductivity studies that utilized 

MT formulations [20,21] . 

Another interesting observation from Fig. 6 is that using the ra- 

io T P ro/RP ro to calculate K EMT for the new shapes can produce 

etter results than using the original p-models. As p is not ana- 

ytically defined for the other shapes, this result suggests that we 

an obtain good K EMT estimates for other inclusion shapes by using 

 P ro/RP ro in place of the analytical p. Although we have performed 

urther investigations (see Supplementary Material Section S6), the 

eason behind why T P ro/RP ro can produce good K estimates for 

ther shapes is still an open question. 

Fig. 6 c depicts the overall RRMSE between the predicted K

nd the K F EM 

. We have included the corresponding RRMSE of 

ach p-model for the new shapes in the Supplementary Mate- 

ial Section S6. As mentioned above, the T P ro/RP ro can give more 

ccurate K estimates than the original p-models. However, after 

ransfer learning, the p-models yield better K EMT values regard- 

ess of the inclusion shape. The overall RRMSE value is the low- 

st for the transfer learning 2-input p-model, highlighting the 

mportance of the ratios of the projected area over the other 

escriptors. 

Comparing the three subplots in Fig. 6 , we see that the K-model 

as larger RRMSE values than the EMT. This result suggests that 

he K-model under-performs the EMT when predicting the K of 

omposites with new inclusion shapes. Thus, in the presence of an 

nalytical EMT equation, it is better to build a machine learning 

odel for the critical unknown component (i.e., the p-model for 

he p values) to augment this equation for predicting K. A machine 

earning model for K itself is not essential. This result also poten- 

ially extends the original EMT formulation to shapes that can be 

athematically difficult to describe while retaining the original in- 

ights from the EMT. 
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Fig. 6. Comparison of the K calculated using the a) EMT and b) K-model with K FEM for composites with different inclusion shapes. The bar charts in each section of a) and 

b) represent the RRMSE between the K FEM and K for the three approaches. The horizontal dotted line in both plots denotes the relative error at 0% while the vertical dotted 

lines demarcate each section that is used for the RRMSE calculation. c) The overall RRMSE of the K based on the different p approaches with K FEM . 
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. Conclusion 

In this work, we present an MLP-based approach to extend a 

ommonly used EMT formulation. To facilitate this goal, we build 

wo types of MLP models (i.e., K-model and p-model) for this EMT. 

ur method conveniently allows us to generate large data sets for 

raining. Our K-model can quickly estimate the thermal conductiv- 

ty of composites with reasonable accuracy. As the K-model and 

he corresponding EMT formulation are restricted to its originally 

erived inclusion shapes, we devise three p-models to mitigate this 

estriction. In the process, we discover certain combinations of our 

roposed physics-based descriptors can better elucidate the effec- 

ive p of any shapes. The predicted p value can be directly used in 

he EMT to obtain an accurate K estimate. Also, we demonstrate 

hat the accuracy of our p-model for the new inclusion shape can 

e improved by a transfer learning process using a small number 

f samples (below 100). This process saves time and resources and 

an be particularly beneficial for hard-to-obtain data sets. Another 

nteresting result from our work is that the ratio T P ro/RP ro can re-

lace the analytical p in the EMT to yield an accurate K for such 
EMT 
i

7 
omposites. This result and those from the p-models suggest that 

he shape factor is related to the ratios of the projected areas in 

ur chosen EMT. Our work presents a method to incorporate new 

omplexities into classical physics-based equations using modern 

eep learning techniques. This procedure can be easily replicated 

o other fields with equations of a similar nature [8–10] . 
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