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The thermal conductivities of silicon thin films with periodic pore arrays (i.e., nanoporous films)

and square silicon nanowires are predicted at a temperature of 300 K. The bulk phonon properties

are obtained from lattice dynamics calculations driven by first-principles calculations. Phonon-

boundary scattering is included by applying three Monte Carlo-based techniques that treat phonons

as particles. The first is a path sampling technique that modifies the intrinsic bulk mean free paths

without using the Matthiessen rule. The second uses ray-tracing under an isotropic assumption to

calculate a single, mode-independent boundary scattering mean free path that is combined with the

intrinsic bulk mean free paths using the Matthiessen rule. The third modifies the ray-tracing tech-

nique to calculate the boundary scattering mean free path on a modal basis. For the square nano-

wire modeled using isotropic ray-tracing, the maximum mean free path is comparable to the wire

width, an unphysical result that is a consequence of the isotropic approximation. Free path sam-

pling and modal ray-tracing produce physically meaningful mean free path distributions. The nano-

porous film thermal conductivity predictions match a previously measured trend, suggesting that

coherent effects are not relevant to thermal transport at room temperature. A line-of-sight for pho-

nons in the nanoporous films is found to change how thermal conductivity scales with porosity.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993601]

I. INTRODUCTION

As the porosity of a solid increases, its effective thermal

conductivity decreases. The decreased cross-sectional area

and the increased tortuosity that the heat flux must follow

can be accounted for by solving the heat diffusion equation

using the bulk (i.e., intrinsic) thermal conductivity. We will

refer to the ratio between the solved effective thermal con-

ductivity and the input intrinsic thermal conductivity as the

continuum correction factor. When the feature sizes of the

porous material are on the order of the fundamental energy

carriers’ mean free paths, boundary scattering of these car-

riers results in a reduction of the intrinsic thermal conductiv-

ity in addition to the continuum effect.

A porous material that exhibits both thermal conductivity

reduction mechanisms is a silicon film of thickness tens to

hundreds of nanometers that has a periodic two-dimensional

array of pores of radii tens to hundreds of nanometers that

span the film thickness.1–18 We will refer to such structures

as nanoporous films. Due to silicon amorphization at the pore

edges during fabrication and the formation of an amorphous

native oxide layer when exposed to air, nanoporous films are

not truly periodic from an atomistic standpoint.11 The thin

film boundaries and pore walls both scatter phonons, which

are the dominant thermal energy carriers in silicon. The ther-

mally relevant bulk phonon mean free paths span five orders

of magnitude at room temperature, from 1 nm to 100 lm, and

the wavelengths of the thermally relevant phonons are 1 to

5 nm.19 The nanostructuring reduces the in-plane thermal

conductivity to 1%–70% of the bulk value at room tempera-

ture.1,4,20 The suppression of the phonon thermal conductivity

makes nanoporous silicon films attractive as a possible ther-

moelectric material.2,21 These structures provide a large

parameter space to explore in terms of the pore lattice design,

pore size, and pore spacing.

To further understand and ultimately predict the experi-

mentally measured reduction in thermal conductivity, nano-

porous silicon films have also been modeled computationally.

When the structure is small enough [i.e., feature sizes

O(1 nm)], the dynamics can be modeled atomistically and the

thermal conductivity can be predicted from molecular

dynamics simulations.21–23 For thicker films and when the

pore feature sizes are on the order of tens of nanometers or

larger, solving the atomistic dynamics explicitly is not possi-

ble due to computational limitations. Mesoscale approaches

that modify the bulk phonon properties based on the nano-

structure geometry are required.20,24–34 The effect of the

boundary scattering on phonon transport and thermal conduc-

tivity can be determined by (i) spatially and temporally solv-

ing the Boltzmann transport equation in the geometry of

interest20,25–31 or (ii) directly modifying the phonon mean

free paths, as we explore herein.

Controversy exists as to whether or not wave-like (also

referred to as coherent) phonon effects contribute to thermal

transport in nanoporous silicon films at room temperature

(i.e., are phonon modes related to the secondary periodicity

introduced by the pores relevant?). Such effects have been

observed at cryogenic temperatures, where the dominant

phonon wavelengths are similar to the feature sizes.6,35–38

Jain et al.24 modeled nanoporous silicon films with featurea)Electronic mail: mcgaughey@cmu.edu
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sizes greater than 100 nm using the free path sampling tech-

nique and compared their in-plane thermal conductivity pre-

dictions to the experimental measurements of El-Kady et al.4

at a temperature of 300 K. They reproduced the fine structure

of the experimental values without the inclusion of coherent

effects. Alaie et al. experimentally measured the in-plane

thermal conductivity of nanoporous silicon films with a min-

imum feature size of 250 nm at room temperature.11 Through

comparison to analytical models, they concluded that the

thermal conductivity had a contribution from coherent pho-

non modes. Lee et al. measured the in-plane thermal conduc-

tivity of nanoporous silicon films with periodic and aperiodic

pores.18 Their thermal conductivity predictions from ray-

tracing calculations agree with the measurements on both

the periodic and aperiodic structures within the experimental

uncertainty. They concluded that coherent effects are not

important at room temperature in nanoporous silicon films

with feature sizes of 100 nm or larger.

The importance of pathways for ballistic phonon trans-

port, i.e., line-of-sight, in silicon nanoporous films has also

been investigated. Using a Boltzmann transport equation-

based approach, Tang et al. found that staggering square pores

in a film reduces the thermal conductivity compared to aligned

pores.20 Experimentally, Anufriev et al. measured a difference

in the thermal conductivity of silicon structures of the same

porosity with simple cubic (SC) and staggered pores.38 They

attributed a lower thermal conductivity in the staggered geom-

etry to the boundary scattering of ballistic phonons.

The objective of this study is to compare thermal conduc-

tivity predictions for square silicon nanowires and nanoporous

silicon films inspired by the structures of Alaie et al.11 from

three Monte Carlo-based techniques for modeling phonon-

boundary scattering: (i) the free path sampling technique of

McGaughey and Jain,39 (ii) the isotropic ray-tracing technique

of Hori et al.,40 and (iii) a modal ray-tracing technique that we

introduce. The nanoporous structures are described in Sec.

II A, and the bulk phonon calculations are detailed in Sec. II B.

The Monte Carlo techniques are presented in Secs. II C–II F

and compared in terms of their underlying assumptions and

computational requirements. The predictions are presented

and analyzed in Sec. III, where we find no evidence for the

existence of coherent phonon effects in the structures of Alaie

et al. For the nanoporous films, we investigate how limiting

the line-of-sight of phonons influences thermal conductivity.

II. METHODOLOGY

A. Nanoporous structures

The five nanoporous silicon films to be studied are based

on the fabricated samples of Alaie et al.11 and are shown in

Fig. 1. The film thickness is 366 nm, and the pores completely

penetrate the film. The large pores are present in all five

structures. They have a radius of 425 nm and a periodicity of

1100 nm such that the edge-to-edge distance between them is

250 nm. Interpenetrating small pores are introduced with

varying periodicity leading to the 1� 1, 2� 2, 3� 3, and

4� 4 structures. The structure without any interpenetrating

small pores will be referred to as SC structure. The small

pore radius of 102.8 nm is chosen so that the distance from its

edge to the nearest large pore edge is 250 nm (i.e., the mini-

mum feature size is the same in all five structures). The

resulting, U, porosities range from 0.469 to 0.496.

B. Bulk phonon calculation

The thermal conductivity in the Cartesian direction a,

ka, is calculated from

ka ¼
X
�

X
q

cph q; �ð Þv2
g;a q; �ð Þ

K q; �ð Þ
jvg q; �ð Þj

; (1)

where � is the polarization, q is the wavevector, cph is the

phonon volumetric heat capacity, vg is the group velocity

vector, and K is the mean free path.

To predict the thermal conductivity of the silicon nano-

structures, we use the bulk phonon properties with the mean

free paths modified with a boundary scattering model (Secs.

II C–II F). In making this choice, we are assuming that: (i)

there are no confinement effects (i.e., there are no bulk wave-

lengths that cannot exist in the nanostructure), as the wave-

lengths of thermally relevant phonons in silicon at room

temperature (1–5 nm)19 are much smaller than the minimum

feature size and (ii) phonon modes that exist based on the

second periodicity of the nanoporous film (i.e., coherent

modes) do not contribute to thermal transport. Subsequently,

our calculations follow a particle-based transport description

where Eq. (1) is valid.

The phonon frequencies, which provide the volumetric

heat capacity (from Bose-Einstein statistics) and the group

velocity vector, and bulk mean free paths are obtained using

lattice dynamics calculations for bulk silicon at a tempera-

ture of 300 K.19,41–44 The required force constants were

calculated using the density functional theory package

Quantum ESPRESSO,45 with an electronic wavevector grid

of 8� 8� 8 and an energy cutoff of 60 Ry on the primitive

(i.e., two-atom) unit cell. We used the local density approxi-

mation exchange-correlation with the norm-conserving pseu-

dopotential Si.pz-vbc.UPF. The harmonic force constants

were obtained through density functional perturbation theory

calculations using a phonon wavevector grid of 8� 8� 8,

FIG. 1. Schematic diagrams of the

top views of the five nanoporous films.

The minimum repeating cell is out-

lined using a dashed line. The struc-

tures are periodic in the x� and z�
directions.
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which was interpolated to a 24� 24� 24 wavevector grid

resulting in 82944 phonon modes. The cubic force constants

were calculated from finite displacements of a 216-atom

supercell. The predicted bulk silicon thermal conductivity is

152 W/m K,46 which is converged to within 2% for the cho-

sen parameter set.47 This value agrees with the experimen-

tally measured thermal conductivity for isotopically pure

silicon of 153 6 5 W/m K.48 As discussed by Jain and

McGaughey, we note that the choice of exchange-correlation

and pseudopotential can change the thermal conductivity

value by up to 21 W/m K for the same convergence parame-

ters.47 We ignore phonon-isotope scattering as it can obscure

the boundary scattering effects. Isotopically pure silicon has

a 10% higher thermal conductivity than natural silicon.48

The continuum correction factor for each geometry was cal-

culated using COMSOL Multiphysics
VR

to solve the heat dif-

fusion equation using the finite element method.

C. Free path sampling

The free path sampling technique takes pre-calculated

bulk phonon properties, specifically the group velocity vector

and the intrinsic mean free path, and calculates the effective

mean free path based on the geometry of the structure.39 For

each phonon mode with intrinsic mean free path Kppðq; �Þ, a

number of free paths are sampled from a Poisson distribution.

Each phonon is started from a random position inside the

structure. In the periodic structures modeled here, the initial

position is taken in the minimum repeating cell. The phonon

is then traced from its origin in the direction of its group

velocity vector until it either reaches the end of its free path

or it encounters a boundary. If the phonon encounters a

boundary, its free path is truncated as the distance from the

origin to the boundary; otherwise, the free path remains the

same. After all the free paths are found, they are averaged to

provide the effective mean free path Kðq; �Þ, which contains

information from both the intrinsic scattering and the

geometry-specific boundary scattering. The thermal conduc-

tivity is then calculated from Eq. (1) using the new effective

mean free paths.

Free path sampling directly modifies the intrinsic mean

free paths based on the phonon-boundary scattering to cal-

culate the effective mean free paths. This formulation is in

contrast to the ray-tracing techniques, where the scattering

rates are calculated separately and then combined using the

Matthiessen rule. In this way, free path sampling avoids

the assumption of independence of the scattering rates as

changes to the intrinsic mean free path change the boundary

scattering rate and vice versa.

D. Isotropic ray-tracing

The isotropic ray-tracing technique developed by Hori

et al. calculates a single boundary scattering mean free path

for all modes, �Kbdy, based on ballistic transmission (i.e., in

the absence of intrinsic scattering).40 The thermal conduc-

tance contribution, G, of a ballistic phonon mode in an iso-

tropic system of length L is49

G ¼ 1

3

cph

L
jvgj�Kbdy: (2)

The thermal conductance of this mode can also be defined

from an isotropic Landauer formalism as49

G ¼ 1

2
cph jvgj

ðp=2

0

T hð Þcos h sin hdh; (3)

where h is the zenith angle off the normal of the plane at the

beginning of the nanostructure and T ðhÞ is the transmission

probability through the nanostructure. From Eqs. (2) and (3)

�Kbdy ¼
3

2
L

ðp=2

0

T hð Þcos h sin hdh: (4)

The initial position of the ray-trace is sampled uniformly across

the beginning plane of the nanostructure (i.e., the xy-plane

when energy transmission is in the z-direction, see Fig. 1). The

initial azimuthal angle is uniformly sampled from ½0; 2pÞ while

the zenith angle is integrated from ½0; p=2� in 90 evenly sized

increments. When the ray-trace encounters a boundary (e.g., a

pore wall or the film boundary), it scatters diffusely in accor-

dance with the Lambert cosine law. The ray-tracing terminates

when the phonon either encounters the end of the structure

(a transmission event) or when it returns to the beginning of

the structure (a reflection event). The ratio of rays encountering

the end of the structure to the total number of rays is the trans-

mission ratio, T ðhÞ. Here, the transmission ratio is calculated

by randomly sampling the initial x-position, y-position, and

azimuthal angle. To model an infinite structure, as we do

here, the structure length is increased until �Kbdy is converged.

Isotropic ray-tracing is equivalent to the Casimir limit.40 No

knowledge of the intrinsic phonon properties is required; it

only depends on geometry.

The Matthiessen rule is then used to determine the mean

free path of each phonon mode in the nanostructure as43,50,51

1

K q; �ð Þ
¼ 1

Kpp q; �ð Þ
þ 1

�Kbdy

: (5)

The Matthiessen rule assumes scattering mechanisms to be

independent. Its applicability to phonon-boundary and phonon-

isotope scattering has recently been investigated. Luisier

found that the Matthiessen rule overestimated the thermal

conductivity of roughened silicon nanowires due to an addi-

tional scattering contribution of localized surface modes cou-

pled to phonon-phonon scattering.52 Similarly, Feng et al.
reported an overestimation of thermal conductivity calcu-

lated by the Matthiessen rule in bulk silicon that resulted

from a failure to account for coupling between impurity and

phonon-phonon scattering.53

E. Modal ray-tracing

The ray-tracing formulation of Hori et al. assumes that

the phonon dispersion is isotropic and ignores modal details.

To investigate the difference between free path sampling

and isotropic ray-tracing, we introduce a formalism of the

ray-tracing technique where the boundary scattering mean

125101-3 Parrish et al. J. Appl. Phys. 122, 125101 (2017)



free path is obtained on a modal basis. This approach allows

us to eliminate the isotropic approximation in the ray-tracing

calculation but not the use of the Matthiessen rule. We start

the ray-trace by initializing the angle off the initial plane

from the group velocity vector of a specific phonon mode.

The calculation then traces the ray as it diffusely scatters with

boundaries according to the Lambert cosine distribution as

with isotropic ray-tracing. A mode-specific transmission

ratio, T ðq; �Þ, is then calculated.

As derived in the Appendix, the mode-specific boundary

mean free path Kbdyðq; �Þ is

Kbdy q; �ð Þ ¼
Ljvg q; �ð Þj
vz q; �ð Þ

T q; �ð Þ: (6)

The effective mean free path is then found by the Matthiessen

rule from

1

K q; �ð Þ
¼ 1

Kpp q; �ð Þ
þ 1

Kbdy q; �ð Þ
: (7)

To save computational time, only phonon modes that have

vz> 0 need to be considered for systems that are symmetrical

about the z-direction. Phonon modes with vz< 0 have the

same Kbdyðq; �Þ as their positive counterpart in the evalua-

tion of Eq. (1). The number of modes that must be ray-traced

can be further reduced by taking advantage of other symme-

tries. Phonon modes with vz¼ 0 make no contribution to the

flux in that direction and have a boundary scattering mean

free path of zero.

F. Convergence and comparison

The square nanowire is finite in the x- and y-directions

and is infinite in the z-direction. For free path sampling, it is

modeled by applying periodic boundary conditions in the z-

direction. The free path sampling calculations were per-

formed with 100000 samples of each phonon mode. The cal-

culation was run with ten different initial seeds, and the 95%

confidence interval on the predicted thermal conductivity is

less than 0.1 W/m K. To approximate an infinite structure for

the isotropic and modal ray-tracing calculations, the length

must be increased until the predicted thermal conductivity is

converged to a set tolerance. For all wire side lengths consid-

ered, we performed isotropic ray-tracing calculations with a

length of 1 mm in the z-direction with 100000 samples of

each zenith angle and initial position. The calculation was

run with ten different initial seeds, and the 95% confidence

interval is less than 0.5 W/m K. Increasing the length to

10 mm led to a difference in thermal conductivity of less

than 2 W/m K. Modal ray-tracing calculations with a length

of 1 mm in the z-direction were performed with 100000 sam-

ples of each phonon mode. The calculation was run with ten

different initial seeds, and the 95% confidence interval is less

than 0.5 W/m K. Increasing the length to 10 mm led to a dif-

ference in the thermal conductivity of less than 2 W/m K.

The minimum repeating structures for the each of the

nanoporous silicon films are outlined by dashed lines in Fig. 1.

For the free path sampling calculations, this structure is chosen

and periodic boundary conditions are applied in the in-plane

(x- and z-) directions. The free path sampling calculations

were performed with 100000 samples of each phonon mode.

The calculation was run with ten different initial seeds, and

the 95% confidence interval on the predicted thermal conduc-

tivity is less than 0.1 W/m K. Isotropic ray-tracing calculations

with 50 cell repetitions in the z-direction were performed with

100000 samples of each zenith angle and initial position. The

calculation was run with ten different initial seeds, and the

95% confidence interval is less than 0.1 W/m K. Increasing

the number of cells by ten led to a difference in thermal con-

ductivity of less than 0.2 W/m K. Modal ray-tracing calcula-

tions with a length of 50 cell repetitions in the z-direction were

performed with 100000 samples of each phonon mode. The

calculation was run with ten different initial seeds, and the

95% confidence interval is less than 0.1 W/m K. Increasing

the number of cells by ten led to a difference in the thermal

conductivity of less than 0.1 W/m K.

A comparison of the three techniques is provided in

Table I. For the specified phonon grid and convergence

parameters, free path sampling is the most computationally

efficient for our chosen material and structures. Isotropic

ray-tracing and modal ray-tracing require 5 and 2750 times

more computational effort. It is important to note that the

computational cost for free path sampling and modal ray-

tracing scales linearly with the number of modes, while that

for isotropic ray-tracing is constant because it is mode-

independent. The computational cost for modal ray-tracing

could be reduced by calculating transmission ratios for a grid

of azimuthal and zenith angles and then interpolating the

transmission ratio for a specific phonon mode based on the

direction of its group velocity vector.

Isotropic ray-tracing is independent of material, and the
�Kbdy calculated for a geometry can be used for multiple materi-

als. This single value, however, is applied to all phonon modes.

In contrast, free path sampling and modal ray-tracing depend

on both geometry and material. Separate calculations must

thus be performed for every combination, but they provide

a mode-dependent boundary scattering mean free path. The

Matthiessen rule, applied in isotropic ray-tracing and modal

ray-tracing, potentially limits these techniques by assuming

that the phonon-boundary scattering rate is independent of the

intrinsic phonon-phonon scattering.

III. RESULTS

A. Square nanowire

We begin by studying thermal transport in square silicon

nanowires with side lengths a ranging from 100 to 1000 nm

TABLE I. Comparison of free path sampling, isotropic ray-tracing, and

modal ray-tracing techniques for including phonon-boundary scattering in

thermal conductivity prediction.

Technique

Normalized

time

Material

independent?

Mode

dependent?

Matthiessen

rule?

Free path sampling 1 No Yes No

Isotropic ray-tracing 5 Yes No Yes

Modal ray-tracing 2750 No Yes Yes

125101-4 Parrish et al. J. Appl. Phys. 122, 125101 (2017)



at a temperature of 300 K. The thermal conductivity predic-

tions from free path sampling, isotropic ray-tracing, and

modal ray-tracing are plotted in Fig. 2. Also plotted is the

thermal conductivity calculated from the analytical Casimir

limit (�Kbdy ¼ 1:12a) and the bulk phonon mean free paths

by use of Eqs. (1) and (5). Thermal conductivity increases

by a factor of two with increasing side length for all three

techniques, exhibiting a more rapid change for the smaller

wires. Isotropic ray-tracing closely follows the Casimir limit

prediction, as expected, and as previously shown by Hori

et al.40 The free path sampling and modal ray-tracing predic-

tions are 6% to 40% higher than those from isotropic ray-

tracing. We note that the Casimir limit is only strictly valid

in the limit where other scattering mechanisms have a much

longer length scale than the boundary scattering feature

sizes. This condition is not met for all phonon modes in sili-

con at room temperature, where the bulk mean free paths are

as short as 1 nm.

The thermal conductivity accumulation functions, kaccum,

for the three Monte Carlo techniques for side lengths of 100

and 1000 nm are plotted in Fig. 3. These curves represent the

cumulative contribution of phonon modes with increasing

mean free path to thermal conductivity. At a side length of

100 nm, the isotropic ray-tracing accumulation function spans

one order of magnitude of mean free paths and terminates at

100 nm. This maximum mean free path is two orders of mag-

nitude smaller than that for free path sampling and modal

ray-tracing, where phonons spanning three orders of magni-

tude contribute to thermal conductivity. Isotropic ray-tracing

only calculates one boundary scattering mean free path and

applies it to all the phonon modes regardless of their direction

[Eq. (5)]. With the use of the Matthiessen rule, no phonon

mode can have a larger mean free path than �Kbdy and thereby

all mean free paths must terminate by this value, leading to

an unphysically small maximum mean free path. Free path

sampling and modal ray-tracing, on the other hand, account

for the boundary scattering at the modal level. The direction-

ality captured in these two techniques allows for phonons

traveling primarily axially to have little to no boundary scat-

tering compared to modes traveling primarily in the plane of

the wire. Because isotropic ray-tracing averages the boundary

scattering in all directions, it fails to physically capture these

long mean free path modes in the nanowire. Although free

path sampling and modal ray-tracing produce similar thermal

conductivities and accumulation functions, the predictions

are not identical. The discrepancies could be a consequence

of the use of the Matthiessen rule in modal ray-tracing.

When the side length is 1000 nm, the maximum mean

free path for free path sampling and modal ray-tracing is one

order of magnitude larger than that for isotropic ray-tracing.

As the wire size is increased and the boundary scattering is

decreased, the importance of including the directional depen-

dence of boundary scattering is reduced. As the side length

of the wire is further increased and the boundary scattering

decreases, the predictions of all three techniques will con-

verge to the bulk thermal conductivity and its accumulation

function.

B. Nanoporous films

1. Thermal conductivity

We now investigate the nanoporous silicon films of

Alaie et al. that were described in Sec. II A.11 The in-plane

thermal conductivities calculated by the three Monte Carlo

techniques are plotted versus porosity in Fig. 4(a). These

thermal conductivities include both the continuum correction

factor and the effect of phonon-boundary scattering. The

thermal conductivities are reduced by a factor of five com-

pared to silicon’s bulk thermal conductivity and decrease

with increasing porosity. The thermal conductivity predic-

tions from free path sampling and isotropic ray-tracing differ

by less than 1 W/m K for each structure, a surprising agree-

ment that was not found for the square nanowire. The modal

ray-tracing values are 4–5 W/m K higher.

FIG. 2. Axial thermal conductivity of square silicon nanowires predicted by

the three boundary scattering techniques and by the Casimir limit (�Kbdy

¼ 1:12a). The 95% confidence interval is contained within the size of the

markers.

FIG. 3. Thermal conductivity accumulation of square silicon nanowires with

side lengths of 100 and 1 000 nm as predicted by the three boundary scatter-

ing techniques.
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The thermal conductivity predictions are compared to

the experimental measurements of Alaie et al. in Fig. 4(b).11

Alaie et al. present thermal conductivities normalized by that

of a solid thin film of the same thickness but do not provide

the normalizing value. To compare our predictions to their

measurements, we normalized the data in Fig. 4(a) to the SC

structure. The Monte Carlo techniques all inherently treat

phonons as particles such that they cannot capture coherent

transport effects. All three techniques follow the experimen-

tal trend, with free path sampling lying within the experi-

mental error bars for the four structures with interpenetrating

small pores. This finding is consistent with the conclusions

of Jain et al.24 and Lee et al.,18 who found that particle-

based models can predict the thermal conductivity of peri-

odic silicon nanoporous films with feature sizes greater than

100 nm at room temperature.

2. Accumulation

The mean free path spectra produced by the Monte

Carlo techniques are now compared by plotting the three

thermal conductivity accumulation functions for the SC film

in Fig. 5. The continuum correction factor is not included

here so as to isolate the phonon-boundary scattering effect.

The accumulations up to a mean free path of 300 nm are sim-

ilar, with modal ray-tracing 4 W/m K below the other two

techniques. Isotropic ray-tracing predicts a maximum mean

free path that is an order of magnitude shorter than that from

the other two techniques. As with the square nanowire, the

origin of this difference is that phonon modes traveling in-

plane encounter less scattering compared to modes traveling

normal to the surfaces of the film. This geometrical effect is

not captured by a single boundary scattering term. Because

of their modal nature, free path sampling and modal ray-

tracing realize these long mean free paths.

3. Line-of-sight

We next examine the effect of line-of-sight, i.e., the dis-

tance a phonon can travel without boundary scattering. As

noted in Sec. II F, free path sampling is less computationally

expensive than the ray-tracing techniques. It is also more

robust, as it does not require convergence with length, and

captures directional effects as the scattering is calculated on

a modal basis. We thus use free path sampling exclusively in

the subsequent analysis.

The line-of-sight creates a limit on the largest free path in

a nanoporous film, which can drastically change with a mini-

mal change in porosity. Using the 1� 1 structure from Fig. 1,

we increase the radius of the interpenetrating small pore from

102.8 nm to 140 nm. At a radius of 102.8 nm, a phonon with a

group velocity vector in the z-direction can propagate unim-

peded between the large and small pores. At a small pore

radius of 125 nm, corresponding to a porosity of / ¼ 0:5095,

the path becomes blocked as there is no line-of-sight from the

current cell past the first nearest-neighbor cell. In Fig. 6, the

FIG. 4. (a) In-plane thermal conductivities of nanoporous silicon films from

our calculations. (b) In-plane thermal conductivities normalized to the SC

structure from the experiments by Alaie et al.11 and from our calculations.

The structures are identified in Fig. 1. The 95% confidence interval is con-

tained within the size of the markers.

FIG. 5. Thermal conductivity accumulation of SC nanoporous silicon films

in the in-plane direction from free path sampling, isotropic ray-tracing, and

modal ray-tracing. The continuum correction factor is not applied.

FIG. 6. Effect of interpenetrating pore radius on thermal conductivity for the

1� 1 structure. The solid lines correspond to linear fits to the data on either

side of the line-of-sight limit. The continuum correction factor is not applied.
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intrinsic thermal conductivity of the 1� 1 structure is plotted

versus porosity. The continuum correction factor is not

included here so as to isolate the phonon-boundary scattering

effect. Lines fit to each side of the crossover radius of 125 nm

show a 2.5% difference in slope that abruptly changes at the

line-of-sight limit.

To further examine the line-of-sight effect, the distribu-

tion of free paths of the first longitudinal acoustic mode in

the z-direction (wavevector of 7.164� 10–12 m�1) for inter-

penetrating small pore radii of 120 and 130 nm is plotted in

Figs. 7(a) and 7(b). For both structures, there is a steady

decrease in the number of free paths from 200 to 1100 nm.

This feature is from phonons that initialize between the small

pores, with the rare limiting case that a phonon modes starts

at the edge of one small pore and travels the full 1100 nm to

the neighboring small pore. In the case of the 130 nm struc-

ture, this is the maximum distance a phonon can travel

and limits the maximum free path. For a small pore size of

120 nm, the free paths extend more than two orders of mag-

nitude past 1100 nm due to the gap between the large and

small pores. It is the contribution of phonon modes that prop-

agate through these gaps that changes the thermal conductiv-

ity scaling at a porosity of 0.5095, as shown in Fig. 6.

IV. SUMMARY

We applied three Monte Carlo-based techniques for

including the effects of phonon-boundary scattering in pre-

dicting the thermal conductivities of silicon square nano-

wires (Fig. 2) and silicon nanoporous films (Fig. 4) at a

temperature of 300 K. All three techniques treat the phonons

as particles and thus do not include coherent effects.

For the square nanowire, isotropic ray-tracing repro-

duced the Casimir limit while free path sampling and modal

ray-tracing predicted larger thermal conductivities. The corre-

sponding thermal conductivity accumulation functions show

a large discrepancy in the range of maximum mean free

paths. Isotropic ray-tracing predicts that only mean free paths

up to the wire side length contribute to thermal conductivity,

while the other two techniques predict the existence of mean

free paths up to the bulk values. This difference is a result of

isotropic ray-tracing’s failure to account for differences in

scattering due to directionality, while the other two techni-

ques calculate the boundary scattering on a modal basis.

The thermal conductivity predictions for the nanoporous

films from the three techniques fall within a range of 6 W/m

K. Those from free path sampling agree with the measure-

ments of Alaie et al.11 within their respective uncertainties.

This finding supports the conclusion obtained by others18,24

that coherent effects do not contribute to thermal transport at

room temperature. Using free path sampling, we examined

the effect of the line-of-sight by considering the 1� 1 struc-

ture with an increasing porosity, as shown in Fig. 6. There is

a distinct change in trend at the transition from a free line-of-

sight to a blocked line-of-sight. This finding highlights the

importance of line-of-sight in the engineering of thermal

transport in nanostructures.

Although the three techniques for including phonon-

boundary scattering produced similar thermal conductivity

magnitudes and trends, there are distinct differences in the

modal details. Isotropic ray-tracing reproduces the Casimir

limit in the nanowire but truncates phonons that should not

scatter with boundaries. This result emphasizes the limits of

the applicability of the Casimir limit when applied to carriers

with a broad spectrum of mean free paths. The formulation of

modal ray-tracing, albeit at a higher computational cost, dis-

criminates the boundary scattering of phonon modes based

on their direction of propagation. Free path sampling has the

advantages of operating on a modal basis, not invoking the

Matthiessen rule, and having the lowest computational cost.
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APPENDIX: MODAL RAY-TRACING DERIVATION

The thermal conductance due to phonons traveling

between two reservoirs with a small temperature difference is

G ¼
X
�

X
q

d vz q; �ð Þ > 0
� �

vz q; �ð Þ�hx q; �ð ÞT q; �ð Þ
df

dT

" #
Dq;

(A1)

where d is the Kronecker delta, f is the distribution function,

T is the mean system temperature, and Dq is the volume in

reciprocal space that modes of q occupy.

FIG. 7. Probability density of free paths of the first [001] longitudinal mode

calculated from free path sampling for the 1� 1 structure with interpenetrat-

ing small pores of radii (a) 120 nm and (b) 130 nm.
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Equation (A1) can be separated into the contribution

from each mode, given by

G q; �ð Þ ¼ vz q; �ð Þ�hx q; �ð ÞT q; �ð Þ
df

dT
Dq: (A2)

In the ballistic transport regime, a mode’s contribution to

thermal conductance is

G q; �ð Þ ¼
cph

L

v2
z q; �ð Þ
jvg q; �ð Þj

Kbdy q; �ð Þ: (A3)

Equating Eqs. (A2) and (A3) leads to

Kbdy q; �ð Þ ¼
Ljvg q; �ð Þj
vz q; �ð Þ

T q; �ð Þ: (A4)
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