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ABSTRACT

A computational framework for predicting phonon frequencies, group velocities, scattering rates, and the resulting lattice
thermal conductivity is described. The underlying theory and implementation suggestions are also provided. By using input from
first principles calculations and taking advantage of advances in computational power, this framework has enabled thermal con-
ductivity predictions that agree with experimental measurements for diverse crystalline materials over a wide range of tempera-
tures. Density functional theory and density functional perturbation theory calculations are first used to obtain the harmonic
and cubic force constants. The harmonic force constants are the input to harmonic lattice dynamics calculations, which provide
the phonon frequencies and eigenvectors. The harmonic properties and the cubic force constants are then used with perturba-
tion theory and/or phenomenological models to determine intrinsic and extrinsic scattering rates. The full set of phonon prop-
erties is then used to solve the Boltzmann transport equation for the mode populations and thermal conductivity. The extension
of the framework to include higher-order processes, capture finite temperature effects, and model alloys is described. A case
study on silicon is presented that provides benchmarking and convergence data. Available packages that implement the frame-
work are compared.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5064602

I. INTRODUCTION

The objective of this tutorial is to describe a computa-
tional framework based on first principles calculations, lattice
dynamics calculations, and the Boltzmann transport equation
(BTE) for predicting the thermal conductivity k of a crystalline
solid where phonons, the quanta of energy associated with
atomic vibrations, are the dominant energy carriers.

Thermal conductivity is defined as the ratio of the heat
flux Q in a material to the temperature gradient rT by the
Fourier law

Q ¼ �krT: (1)

Thermal conductivity is a second-order tensor with zero

non-diagonal elements kαα ; kα, where α ¼ x, y, or z. Thermal
conductivity is a function of thermodynamic state (i.e., tem-
perature and pressure) and reflects processes happening at
the scale of the fundamental energy carriers. In a crystalline
solid, the carriers are electrons and phonons, the latter of
which is the focus here. Thermal transport by phonons is rele-
vant in a wide range of applications. Thermal insulation and
thermoelectric energy conversion require low thermal con-
ductivity. Heat dissipation in the semiconductor layers in
microelectronic and optoelectronic energy conversion devices
requires high thermal conductivity. Experimentally-measured
thermal conductivities of crystals where phonons dominate
thermal transport are plotted in Fig. 1.1–10

Phonon dynamics are governed by the BTE. The thermal
conductivity prediction framework discussed herein is
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based on a steady-state analysis, where the BTE for a
phonon mode with wave vector q and polarization denoted
by ν is15
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#
collision

: (2)

The left-hand side represents phonon drift, where vg is the
mode’s group velocity vector and n is its population. The
right-hand side captures phonon scattering and is called
the collision term. The collision term represents a compli-
cated set of phenomena and is not a derivative per se.
Equation (2) is written for all phonon modes in the crystal,
and the set of coupled differential equations are solved for
the unknown populations.

The phonon heat flux is found by summing over all
modes as

Q ¼ 1
V

X
q,ν

�hω
q
ν

� �
vg

q
ν

� �
n

q
ν

� �
, (3)

where V is the crystal volume, �h is the reduced Planck cons-
tant, and ω is the mode frequency. At equilibrium, i.e., when
the temperature gradient is zero, Q ¼ 0 and the populations
are described by the Bose-Einstein distribution

nBE
q
ν

� �
¼ 1

ex � 1
, (4)

where x ; �hω q
ν

� �
=kBT, kB is the Boltzmann constant, and T is

the temperature.
By solving a linearized form of Eq. (2) and using Eqs. (1) and

(3), the thermal conductivity in direction α can be written as

kα ¼
X
q,ν

c
q
ν

� �
v2g,α

q
ν

� �
τα

q
ν

� �
: (5)

Here, c is the volumetric specific heat, which is a function of
temperature and frequency, and τα is the lifetime (which is also
called the scattering time or the transport lifetime) when the
heat flux is applied in the α-direction.

The theoretical pieces needed to predict the phonon
properties in Eq. (5) and the resulting thermal conductivity
have existed for many decades but were not integrated until
the late 2000s. The underlying theory is described in previous
papers and reviews,12,15–19 such that we only present an over-
view. Our focus is on the computational workflow, which is
shown in Fig. 2 and contains two parts: first, calculating the
atomic force constants from an empirical potential or first
principles and second, using the force constants to calculate
phonon properties and from these, thermal conductivity. It is
important to note that the lattice dynamics calculations and
BTE solutions associated with the second part of the work-
flow are agnostic to the origin of the force constants. The
scalings of the computational cost of the central elements of
the framework are presented in Table I.

The historical use of empirical potentials (e.g., Stillinger-
Weber or Tersoff for silicon) and/or the relaxation time
approximation (RTA) led to thermal conductivity predictions
that deviated significantly from measurements.22–24 These
deviations are largely a result of empirical potentials not being
fit to thermal transport-related properties. It was not until (i)
force constants obtained from first-principles calculations
[e.g., based on density functional theory (DFT) and density
functional perturbation theory (DFPT)]16,25 and (ii) solutions of
the BTE beyond the RTA,26–28 both of which were enabled by
advances in computational power, were applied that thermal
conductivity predictions began to agree with measurements.
The success of the first-principles driven framework has since
been demonstrated for a range of low and high thermal con-
ductivity materials, examples of which are provided in Fig. 1
alongside the experimental measurements.11–14 We will return
to a discussion of Fig. 1 in Sec. V E.

FIG. 1. Thermal conductivity data from experimental measurements (markers)
and first principles-driven predictions (lines) for diamond,11 SiC,5,12 GaN,6,7,12

Si,8 GaAs,2,12 InSb,2,3,12 SrTiO3,
9,10,13 and PbTe.1,4,14 The diamond experimen-

tal data are from five sources, which are distinguished in Ref. 11. Two sets of
experimental data are shown and distinguished for each of GaN, InSb, SrTiO3,
and PbTe. The silicon predictions were made using the framework described
herein. All experimental data are for materials that contain their natural isotopic
content. The predictions for diamond, SiC, GaN, Si, GaAs, and InSb include the
effect of isotope scattering.
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While open-source packages are now available that allow
for thermal conductivity predictions to be made with reason-
able ease (e.g., ALAMODE,29 almaBTE,30 phono3py,31 and
ShengBTE32), the user must still make key decisions throughout
the workflow. It is our hope that this tutorial will help users of
these packages to understand (i) how to make these decisions,
(ii) how to ensure convergence, and (iii) the trade-offs between
accuracy and computational cost. This tutorial should also be
helpful to researchers who are developing their own computa-
tional tools and integrating them with available packages.

The rest of the tutorial is organized as follows. The
set-up of the DFT calculations is discussed in Sec. II. The
force constant calculation is motivated in the context of a
Taylor series expansion of potential energy and described in
Sec. III. The harmonic lattice dynamics calculations that
provide the phonon frequencies are described in Sec. IV.
Calculations of phonon scattering rates due to intrinsic and
extrinsic factors are presented in the context of the linearized
BTE, perturbation theory, and phenomenological models in
Sec. V, which lead to the final thermal conductivity

FIG. 2. Workflow for obtaining phonon properties and thermal conductivity from density functional theory (DFT) calculations, lattice dynamics calculations, and the BTE.
The harmonic force constants can alternatively be calculated from density functional perturbation theory (DFPT), which may provide better accuracy. A similar workflow
can be used with empirical potentials, with the only difference being how the forces are calculated.
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prediction. Advanced topics are discussed in Sec. VI. A case
study for silicon is presented in Sec. VII, which provides
benchmarking data and an examination of convergence. A
survey of computational packages is presented in Sec. VIII
and a summary and outlook are provided in Sec. IX.

II. DENSITY FUNCTIONAL THEORY

Predicting phonon properties and thermal conductivity
requires a calculator that provides the energy of a set of
atoms and, ideally, the net force exerted on each atom.
Density functional theory is a suitable calculator for this
purpose.33,34 Within the framework of DFT, the many-body
problem of interacting electrons described by the
Schrödinger equation is reduced to a simpler problem of
non-interacting electrons in an effective potential. It is
because DFT includes electronic degrees of freedom that it
is more accurate than empirical potentials, but also what
makes it more computationally expensive.

As related to phonon properties and thermal conductivity,
DFT is applied to perform: (i) An energy minimization to obtain
the zero-temperature atomic structure. It is common practice
to use the zero-temperature structure for predicting phonon
properties and thermal conductivity at finite temperatures.
Finite temperature effects are discussed in Sec. VI B. (ii) Single
point energy/force calculations that provide the force constants

through finite differences (Sec. III C). The force constants can
also be obtained from DFPT calculations (Sec. III B).35,36

The DFT package must first be selected. Common pack-
ages are listed in Table II along with key features and capabili-
ties. While we present DFT calculations performed using the
plane wave package Quantum ESPRESSO,37 the computational
framework can be applied using any DFT package that can
handle periodic systems. When benchmarking results, it is
important to ensure that the same version of a package is used.

In a plane wave-based DFT code, the pseudopotential
and exchange-correlation functional must be selected. A
pseudopotential is specified for each atomic species and
approximates the Coulombic potential for the nucleus and
the core electrons by considering them together. This choice
reduces the computational cost compared to all-electron
methods by enabling the use of plane-wave basis sets for
describing the valence electrons. The exchange-correlation
functional approximates the many-body electron interactions.
Its specification remains the major challenge in DFT. The sim-
plest form of the exchange-correlation is the local density
approximation (LDA),47 in which the effective potential is only
a function of the spatially-dependent electron density. The
generalized gradient approximation (GGA), of which there are
many varieties,48,49 uses the electron density and its gradient.
Additional complexity can be added beyond the GGA, as
described by the Jacob’s ladder of density functional approxi-
mations.50 Density functional theory packages typically
contain a library of pseudopotentials and multiple options for
the exchange-correlation functional.

Selecting the pseudopotential and exchange-correlation
functional in a DFT calculation is analogous to selecting an
empirical potential. Reported accuracies of a given pseudopo-
tential and exchange-correlation functional for material prop-
erties not directly related to thermal transport (e.g., elastic
constants, defect energies) may not be a good gauge of their
suitability for predicting phonon properties and thermal con-
ductivity due to the key role played by anharmonicity. Recent
studies have assessed the impact of the pseudopotential and
exchange-correlation functional on thermal conductivity pre-
diction. For silicon at a temperature of 300 K, Jain and
McGaughey report a range of 127-172W/mK.51 For graphene
at a temperature of 300 K, Qin et al. report a range of

TABLE I. Computational cost scaling of the central elements of the thermal
conductivity prediction framework. Ntotal is the total number of atoms in the
computational cell, Nunitcell is the number of atoms in the unit cell, and M is the
number of wave vectors. For a Brillouin zone resolution of qx � qy � qz ,
M ¼ qxqyqz .

Calculation Scaling Comment

DFT (single point energy) N3
total DFT codes that scale as Ntotal are

available,20 although large Ntotal is
required to realize the benefits.

DFPT N4
total Typically, Ntotal ¼ Nunitcell . An N3

total
scaling algorithm has been proposed.21

Harmonic lattice dynamics N3
unitcellM

Three-phonon scattering
rates

N4
unitcellM

2 Required in RTA and full BTE solutions.

TABLE II. Density functional theory packages and their features/capabilities.

Quantum ESPRESSO37 GPAW38,39 VASP40–43,c FHI-aims44 ABINIT45

Basis set Plane wave Plane wave, LCAO,a

real-space mesh
Plane wave All-electron Plane wave

Open source Yes Yes No No Yes
GPUd compatibility Yes (3rd party) Partial Partial Partial Experimental
Vibrational frequencies DFPT, 3rd-order for cubic force

constants also available
Finite difference when
combined with ASEb

Finite difference, DFPT
(Γ-point only)

Finite difference, DFPT
(Γ-point only)

DFPT

aLinear combination of atomic orbitals.
bAtomic simulation environment.46
cVienna Ab Initio Simulation Package.
dGraphics processing unit.
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1900-4440W/mK,52 while Taheri et al. report a range of
5400-8700W/mK.53

Two key parameters must be specified in any plane wave-
based DFT calculation: (i) The electronic wave vector grid,
which provides the resolution of the electronic Brillouin zone.
Its specification depends on the material and the size of the
computational cell. Smaller computational cells require a
finer electronic wave vector grid. (ii) The plane wave energy
cutoff, which truncates the expansion of the wave functions
of the valence electrons. Its specification depends on the
material and the choice of pseudopotential. Softer pseudopo-
tentials require a smaller plane wave energy cutoff.54 When
modeling a low-dimensional material (e.g., a carbon nanotube
or graphene), the size of the surrounding vacuum region must
also be specified. The electronic wave vector grid, the plane
wave energy cutoff, and the vacuum size should be chosen to
ensure convergence of properties of interest.

III. FORCE CONSTANTS

A. Taylor series expansion of potential energy

The material-dependent inputs to the workflow shown in
Fig. 2 are its crystal structure and force constants. The unit
cell parameters and equilibrium atomic positions can be
obtained from an energy minimization in DFT. To understand
the need for the force constants, consider a Taylor series
expansion of the potential energy of the system, U, around its
equilibrium state

U ¼ U0 þ
X
i

X
α

Πα
i u

α
i þ

1
2!

X
i,j

X
α,β

Φαβ
ij u

α
i u

β
j

þ 1
3!

X
i,j,k

X
α,β,γ

Ψαβγ
ijk uα

i u
β
j u

γ
k þ � � � ,

(6)

where

Πα
i ¼ @U

@uα
i
¼ �Fαi , (7)

Φαβ
ij ¼ @2U

@uα
i @u

β
j

, (8)

Ψαβγ
ijk ¼ @3U

@uα
i @u

β
j @u

γ
k

: (9)

Here, i, j, and k sum over the atoms and α, β, and γ sum over
the Cartesian coordinates (x, y, and z). U0 is the reference
energy, which is taken as zero, and uα

i labels a small displace-
ment of atom i in the α-direction. Πα

i is the negative of the
net force acting on atom i in the α-direction, Fαi , which is zero
at equilibrium. The Φαβ

ij and Ψαβγ
ijk terms are the second- and

third-order derivatives of the potential energy and are known
as the harmonic and cubic force constants.

Each summation in Eq. (6) is in theory infinite. In practice,
phonon property and thermal conductivity calculations (Secs.
IV and V) are made by considering interactions between atoms
within a cutoff radius in a supercell (i.e., a computational cell
built from many unit cells), leading to a finite number of force
constants. Even then, the number of atoms required to obtain
converged phonon properties and thermal conductivity may
be O(100), such that the number of unknown force constants is
intractable. To make computations feasible, it is imperative to
use permutation (e.g., Φαβ

ij ¼ Φβα
ji ) and space group symmetries

(using, e.g., Spglib55) to reduce the number of unknown force
constants.56 The number of distinct force constant depends on
the size and symmetry of the unit cell. Silicon has a two-atom
face-centered cubic unit cell. By considering fifth- (6.21 Å) and
third- (4.86 Å) neighbor cutoffs for the harmonic and cubic
force constants, symmetries reduce the number of unknown
force constants from 3384 and 90 936 to 17 and 95. β-Ga2O3

has a ten-atom monoclinic unit cell with comparatively less
symmetry than silicon. By considering 11 Å and 3 Å cutoffs for
the harmonic and cubic force constants, symmetries reduce
the number of unknown force constants from 46 566 and
11 448 to 11 836 and 1198.

The harmonic and cubic force constants also need to
satisfy translational invariance, which dictates that translating
the crystal as a whole leaves the force constants unchanged.
Not satisfying translational invariance can lead to unphysical
results such as non-zero acoustic frequencies at the Γ-point
(i.e., the center of the Brillouin zone). When extracting force
constants numerically, translational invariance is not satisfied
due to finite numerical precision. Translational invariance can
be satisfied by either (i) using it along with the symmetry con-
straints to reduce the number of unknown force constants56

or (ii) as a post-extraction step in which small corrections are
added to all force constants.57

We next describe how the harmonic and cubic force con-
stants can be obtained at zero temperature using DFPT,
which is a DFT-based reciprocal space approach, and using
finite displacements, which is a real space approach that can
be applied using both DFT and empirical potentials. The
quasi-harmonic approximation and finite-temperature force
constant calculations are described in Sec. VI B.

B. Density functional perturbation theory

In DFPT, linear response theory is applied to the
Kohn-Sham equations used to solve for the electronic charge
density to determine how the solutions are affected by small
perturbations.35,36 It can be applied to study phonons, electric
field response, and phonon-electron coupling. Specific to this
tutorial, the force constants are related to the derivatives of the
electronic charge density with respect to atomic displace-
ments. The calculation is made in reciprocal space at the level
of the unit cell, which allows for calculation of dynamical matri-
ces at an arbitrary resolution of the phonon Brillouin zone
without the need for supercells. An inverse Fourier transform is
then applied to obtain the real space force constants. DFPT cal-
culations scale with the fourth power of the number of atoms
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in the unit cell, such that they are limited to small unit cell
crystals. Calculation of harmonic force constants from DFPT is
available in many DFT packages (Table II). The theory for
obtaining cubic force constants from DFPT has been developed
and its implementation into DFT packages is ongoing.

C. Finite displacements

1. Formulation

For an empirical potential, it is possible to determine the
harmonic and cubic force constants analytically. The required
derivatives, however, may be challenging to derive. As such, a
more intuitive way to calculate the force constants, from
either an empirical potential or DFT, is by applying small
displacements to the atoms in a supercell. In doing so, it is
convenient to note that

Fαi ¼ � @U
@uα

i
� �

X
j

X
β

Φαβ
ij u

β
j �

1
2

X
j,k

X
β,γ

Ψαβγ
ijk uβ

j u
γ
k (10)

and that

Φαβ
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@uα
i @u

β
j

¼ � @Fαi
@uβ

j

, (11)

Ψαβγ
ijk ¼ @3U

@uα
i @u

β
j @u

γ
k

¼ � @2Fαi
@uβ

j @u
γ
k

: (12)

Thus, the harmonic and cubic force constants are related to
the first and second derivatives of the forces. In a self-
consistent DFT calculation, the forces can be obtained from
the Hellman-Feynman theorem.

2. Finite difference

In the finite difference method, the harmonic (cubic)
force constants are individually and directly evaluated by
applying small displacements, h, to one (two) atoms in a
supercell, calculating the resulting force on a second (third)
atom, and then using a finite difference formula. We have
found that four-point central difference formulas with a
suitable choice of h provide sufficient accuracy. They are
given by

Φαβ
ij �

Fαi (u
β
j ¼ 2h)� 8Fαi (u

β
j ¼ h)þ 8Fαi (u

β
j ¼ �h)� Fαi (u

β
j ¼ �2h)

12h
,

(13)
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4h2 Fαi
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j ¼ h
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 !
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uβ
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uγ
k ¼ h

 !
� Fαi

uβ
j ¼ �h

uγ
k ¼ �h

 !" #
: (14)

3. Taylor series fitting

In the Taylor series fitting method, the harmonic and
cubic force constants are obtained simultaneously by creating
a set of supercells that have one or more atoms displaced
from their equilibrium positions.56 Equation (10) is then
written as the linear system

UΦ ¼ �F, (15)

where U is the displacement matrix and contains terms of the
form uβ

j and uβ
j u

γ
k, Φ is a vector that contains the unknown

force constants, and F is the force matrix, which contains
terms of the form Fαi . The number of rows in the displacement
and force matrices is the number of force-displacement
equations. For a three-dimensional system with Ntotal atoms in
the supercell and Ns displaced supercells, the number of
force-displacement equations is 3NtotalNs. The number of
columns in the displacement and force matrices is the
number of unknown force constants (harmonic and cubic). If
the number of unknown force constants is less than the
number of equations, this linear system is over-specified and
can be solved using least-square fitting (e.g., singular value
decomposition).

4. Implementation

To obtain the force constants from the finite difference
or Taylor series fitting methods, the displacement size and
the supercell size must be specified.

The displacement should be (i) large enough to avoid
numerical uncertainties associated with the force calcula-
tions, which is more likely to be important in DFT than
with an empirical potential and (ii) small enough that
the atoms do not explore parts of the potential energy
surface that have contributions beyond the cubic terms
in Eq. (6). The magnitude of the appropriate displacement
is material dependent. A suitable starting point is
0.01-0.05 Å.

Interactions between atoms grow weaker as the distance
between them increases. When using an empirical potential, a
radial cutoff is specified to limit the range of the interactions.
The cutoff should be at most one half of the shortest linear
dimension of the supercell to avoid an atom interacting with
images of itself due to the required use of periodic boundary
conditions. If long-range interactions are included using a
reciprocal-space approach (e.g., electrostatic interactions
modeled using the Ewald sum), then additional theory is
required.35
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In a DFT calculation, an atom naturally interacts with all
other atoms, including images of itself and other atoms in the
image cells. There is no way to limit the extent of the interac-
tions, as can be done for an empirical potential. The net force
on an atom obtained from the Hellman-Feyman theorem
includes the effect of all atoms in the supercell and in all the
image cells.

Three cutoffs are required to enable tractable calcula-
tions of phonon properties and thermal conductivity from
DFT-based force constants, which in turn inform the selec-
tion of the supercell size.

The force cutoff specifies the pairs and triplet of atoms
to consider when forming the list of unknown force con-
stants. The objective is to minimize the effect of images of
the displaced atom(s). By Newton’s third law, the sum of the
forces acting on all the atoms in the supercell must be zero.
Furthermore, the effect of displacing one atom on the force
on another decreases as the distance between them
increases. As such, the force cutoff should be chosen such
that the sum of the forces on the atoms inside of its spheri-
cal volume is close to zero. To avoid an atom interacting
with itself, the force cutoff should be at most one half of the
smallest linear dimension of the supercell. Because of the
potentially long-range interactions in a DFT system, the
net force on an atom due to just the other atoms in the
supercell is not necessarily zero. Thus, both the supercell
size and the force cutoff must be simultaneously consid-
ered when assessing convergence of phonon properties
and thermal conductivity.

The harmonic cutoff specifies the number of neighbor
shells considered when performing harmonic lattice dynam-
ics calculations (Sec. IV). The cubic cutoff specifies the
number of neighbor shells considered when calculating
phonon scattering rates using the BTE (Sec. V).

None of these three cutoffs limits the range of the
atomic interactions in a DFT calculation. The maximum
value of the harmonic or cubic cutoff is that of the force
cutoff but can be less. For example: (i) When using the
Taylor series fitting method (Sec. III C 3), a force cutoff that
is larger than the harmonic and cubic cutoffs may provide
higher accuracy force constants. (ii) The computational cost
of the intrinsic scattering rate calculations (Sec. V A), which
require cubic force constants, is large. Fortunately, cubic
force constants tend to be short-range, which enables con-
verged results for a cubic cutoff that is smaller than the
force and harmonic cutoffs.

To get an idea about the range of the forces, consider
the following example for silicon. We displaced one atom in a
cubic 216-atom supercell (linear dimension of 16.2 Å) from its
equilibrium position by 0.032 Å. The magnitude of the force
acting on each of the 216 atoms in the supercell, including
the displaced atom, is plotted versus the distance from the
displaced atom in Fig. 3. The forces go to less than 1% of the
maximum force (which is that acting on the displaced atom
itself ) beyond a distance of � 5 Å, which captures up to
fourth neighbor interactions. This simple calculation, whose
computational cost is insignificant compared to that for the

full thermal conductivity prediction, provides a suggestion
for the initial guesses for the force cutoff and supercell size
for this system. As we will see in Sec. IV, however, while 5 Å is
a suitable cubic cutoff for silicon, it is not sufficient for the
harmonic cutoff.

IV. HARMONIC LATTICE DYNAMICS

A. Eigenvalue problem

The purpose of a harmonic lattice dynamics calculation
is to determine the set of phonon frequencies ω and eigen-
vectors e associated with the wave vector q that define the
modes q

ν

� �
.58 There are 3Nunitcell modes for a given wave

vector. The eigenvector for each mode, which is also called
the mode shape or polarization vector, is a vector of length
3Nunitcell whose entries are the relative displacements of the
atoms when that mode is activated.

The choice of the unit cell sets the lattice vectors, the
reciprocal lattice vectors, as thus the shape of the Brillouin
zone and the allowed wave vectors.59 For a desired Brillouin
zone resolution, the full list of non-degenerate wave vectors
needed to perform thermal transport calculations can be
obtained by applying the Monkhorst-Pack algorithm.60 A
reduced list of wave vectors, which can significantly reduce
the computational time required to calculate phonon scat-
tering rates (Sec. V), can be obtained by applying the crystal
symmetries.

A harmonic lattice dynamics calculation is performed
at zero temperature, where the atoms sit at their equilib-
rium positions. By assuming that the phonon modes are
non-interacting plane waves [i.e., independent harmonic
oscillators, thus truncating the expansion in Eq. (6) after
the second-order term], the solution of the resulting

FIG. 3. Forces acting on the atoms in a 216-atom silicon supercell when one
atom is displaced by 0.032 Å. The distance is calculated with respect to the dis-
placed atom. The horizontal dashed line is to guide the eye and represents 1%
of the maximum force.
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eigenvalue problem,

ω2 q
ν

� �
e q

ν

� �
¼ D(q)e q

ν

� �
, (16)

gives the frequencies and eigenvectors for the wave vector q.
The dynamical matrix D(q) has size 3Nunitcell � 3Nunitcell and is
built from the harmonic force constants and the equilibrium
atomic positions. The element of D(q) associated with the
interaction of atoms b and b0 (1 � b, b0 � Nunitcell, b may be
equal to b0) where b is moving in the α-direction and b0 is
moving in the β-direction is given by

D3(b�1)þα,3(b0�1)þβ(bb0, q)

¼ 1

(mbmb0 )
1=2

X
l

Φαβ
b0,b0l exp {iq � [r(l)� r(0)]}: (17)

Here, in the D subscript, α or β equals 1 for x, 2 for y, and 3 for
z, m is the atomic mass, r(l) corresponds to the center of
mass of unit cell l, the summation is over all unit cells, and
the harmonic force constant corresponds to the α-β interac-
tion between atom b in the central unit cell (denoted by 0)
and atom b0 in unit cell l. This formulation can also be used to
predict the vibrational modes of a molecule by setting q ¼ 0
and taking the molecule as the unit cell.

Because the dynamical matrix is Hermitian, all its eigen-
values ω2 q

ν

� �
are real. For a crystal, three frequencies will

always be zero, corresponding to the degrees of freedom
associated with rigid translation. For a stable crystal, all the
remaining eigenvalues are positive, leading to all positive
frequencies. The presence of negative eigenvalues leads to
imaginary frequencies. The associated modes are unstable
and are an indication of a potential phase transition. Unstable
modes do not have well-defined properties and prevent the
calculation of thermal conductivity.

B. Property calculation

With the frequencies and eigenvectors for a full list
of non-degenerate wave vectors in the Brillouin zone,
harmonic-level phonon properties can be calculated. Because
the lattice dynamics calculation does not make any assump-
tions about the system, Bose-Einstein (i.e., quantum) statistics
can be used in these calculations. For comparing results to
the predictions of classical molecular dynamics simulations,
Boltzmann statistics should be used.

Plotting the phonon frequencies versus the wave vector
along a given direction gives the phonon dispersion. The dis-
persion is typically plotted along high-symmetry directions,
for example, a Γ-X-W-L-Γ loop for a face-centered cubic
crystal.

The volumetric specific heat of a phonon mode is
given by

c
q
ν

� �
¼ �hω

q
ν

� �
dnBE

dT
¼ kBx2

V
ex

(ex � 1)2
: (18)

In the classical limit, c q
ν

� � ¼ kBT=V. The volumetric specific

heat of the system can then be evaluated from

c ¼
X
q,ν

c
q
ν

� �
: (19)

Similar formulas are available for calculating other thermo-
dynamic quantities at the mode and system level (e.g., inter-
nal energy, Helmholtz free energy, entropy).61

The phonon group velocity is defined as

vg
q
ν

� �
¼

@ω
q
ν

� �
@q

, (20)

which is the gradient of the dispersion curve. It can be calcu-
lated by two approaches.

The first approach is to perform a central difference on
Eq. (20) using closely-space wave vectors. This technique is
advantageous as no additional computational framework is
needed beyond the solution of the eigenvalue problem. The
disadvantage is that there is ambiguity when performing the
central difference near where two dispersion branches cross.
This ambiguity exists because eigenvalue solvers provide their
output without any knowledge of the specific modes. This
challenge can be overcome by using very small changes in the
wave vector when performing the central difference and
using the mode shapes to differentiate branches. For modes
at the center or edge of the Brillouin zone, a forward or back-
ward difference must be used. Care must also be taken near
local minima or maxima, where the group velocity is zero.

The second approach is to evaluate the components of
the group velocity vector using the expression62

vg,α
q
ν

� �
¼ 1

2ω
q
ν

� � ey q
ν

� �
@D(q)
@qα

e q
ν

� �� �
, (21)

where the superscript y denotes the conjugate transpose. In
this case, a finite difference is applied to approximate the
derivative of the dynamical matrix with respect to the wave
vector components. The issues involved with the finite differ-
encing of the frequency in Eq. (20) are no longer present. We
recommend the use of Eq. (21).

A mode’s Grüneisen parameter is a measure of its anhar-
monicity and plays a role in theory related to thermal expan-
sion. It is defined for a cubically isotropic system as

γ
q
ν

� �
¼ � V

ω
q
ν

� �dω
q
ν

� �
dV

: (22)

The mode Grüneisen parameter can be evaluated by perform-
ing a harmonic lattice dynamics calculation over a range of
volumes around the equilibrium state and using a finite differ-
ence to approximate the derivative. The Grüneisen parameter
can also be calculated without any approximation using the
cubic force constants.63 Such a calculation provides a check
on a force constant calculation implementation. The bulk
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Grüneisen parameter is given by

γ ¼
P

q,ν c
q
ν

� �
γ

q
ν

� �
P

q,ν c
q
ν

� � : (23)

For non-cubic materials, the mode-dependent and bulk
Grüneisen parameters are tensors.64

C. Implementation

It is straightforward to write a computer program to
perform harmonic lattice dynamics and to calculate the asso-
ciated mode- and system-level phonon properties. Ideally,
the program should be decoupled from the calculation of the
harmonic force constants, which may come from an empirical
potential or from DFT. The General Utility Lattice Package
(GULP) can perform a wide variety of calculations related to
harmonic lattice dynamics.65

As discussed in Sec. III C 4, the force, harmonic, and
cubic cutoffs must be specified when calculating force con-
stants using finite displacements. When applying the finite
difference method, we take the force and harmonic cutoffs to
be the same. Analyzing how the force on an atom depends on
its distance from the displaced atom provides a suggestion for
the force cutoff (Fig. 3). We have found, however, that exam-
ining the dispersion curves provides better guidance for the
selection of the harmonic cutoff.

As an example, consider the silicon [100] transverse acous-
tic dispersion curves plotted in Fig. 4. The finite difference
curves correspond to a force/harmonic cutoff of 5-10 neighbor
shells (5.4–7.5 Å) and are compared to a higher-accuracy DFPT
prediction. Even at a cutoff of 10 neighbor shells, the finite dif-
ference prediction does not capture key features of the DFPT

result, notably the slope at the Γ-point, which corresponds to
the sound speed, and the frequency at the X-point. Mazur
and Pollmann report a similar sensitivity of silicon’s trans-
verse acoustic branches to the number of neighbor shells
considered in calculations based on a semi-empirical
approach.66 The longitudinal acoustic, transverse optical,
and longitudinal optical dispersion curves predicted from
finite differences show a smaller spread and better agree-
ment with the DFPT predictions (see Figs. S1–S3 in the
supplementary material).

We have found a similar behavior for other materials.
That is, a large force/harmonic cutoff is required to obtain
converged dispersion curves. In some cases, the dispersion
curves are never satisfactory. The need to use large supercells
adds significantly to the computational cost. For example,
while a 216-atom supercell (i.e., three conventional unit cells
in each direction) for silicon provides up to the tenth neigh-
bor force constants, a 512-atom supercell (four conventional
unit cells in each direction) is required to access the 11th to
17th neighbor shells (5.5–10.8 Å). As such, we typically perform
DFPT calculations to obtain the harmonic force constants and
recommend this practice.

V. BOLTZMANN TRANSPORT EQUATION

A. Intrinsic scattering

The harmonic lattice dynamics calculations described
in Sec. IV provide the mode-dependent volumetric specific
heats and group velocities needed to evaluate thermal
conductivity from Eq. (5). The other required inputs are
the lifetimes, τα

q
ν

� �
, which are the focus of this section.

Calculating the lifetimes requires anharmonic lattice
dynamics, perturbation theory, and the BTE. The underly-
ing theory and the associated computational implementa-
tion are significantly more challenging than harmonic
lattice dynamics. Because packages are available that can
provide the lifetimes (Sec. VIII), the majority of researchers
are unlikely to develop their own codes. As such, we focus
our attention on a high-level view of the theory, on under-
standing factors that may differentiate these packages, and
on decisions that the user still needs to make. The reader
is referred to previous works that describe the theory and
implementation in detail.64,67–69

The intrinsic phonon lifetimes (i.e., related to the scat-
tering of phonons with other phonons) are calculated
based on a perturbation to the non-interacting harmonic
modes. As such, the wave vectors, frequencies, and eigen-
vectors obtained from harmonic lattice dynamics are required
inputs to the calculation along with the atomic structure.
The perturbation is realized through the inclusion of higher-
order terms in the potential energy expansion given by
Eq. (6). We focus our attention on the third-order term,
which captures three-phonon interactions through the cubic
force constants. Quartic effects (i.e., four-phonon interac-
tions) are discussed in Sec. VI A. Extrinsic scattering is
discussed in Sec. V C.

FIG. 4. Silicon [100] transverse acoustic dispersion curves calculated from (i)
DFPT and (ii) finite differences using an increasing number of neighbor shells.
Even at ten neighbor shells, the finite difference prediction does not match the
higher accuracy of the DFPT result.
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The intrinsic lifetime of mode (q, ν)1 depends on all of its
possible three-phonon interactions with other modes.
Denoting two participating modes as (q, ν)2 and (q, ν)3, such a
three-phonon interaction can take on two forms. In a Type I
interaction, (i) mode 1 creates modes 2 and 3 or (ii) modes 2
and 3 create mode 1. In a Type II interaction, (i) mode 1 com-
bines with mode 2(3) to create mode 3(2) or (ii) mode 2(3)
creates modes 1 and 3(2). The translation invariance of the
crystal requires that

q1 ¼ q2 þ q3 þG (Type I) , (24)

q1 þ q2(3) ¼ q3(2) þG (Type II) , (25)

where G is the zero vector (corresponding to a normal
process) or a reciprocal lattice vector (corresponding to an
Umklapp process).

The intrinsic scattering rate Ω for either a Type I or Type
II interaction, where the initial state is denoted by i and the
final state by f, is given by the Fermi golden rule as

Ωi!f ¼ 2π
�h
j fh jU3 ij ij2δ(Ei � Ef ), (26)

where fh jU3 ij i is the matrix element of U3 [the third order
term in Eq. (6)] between the initial and final states. δ(Ei � Ef )
is a delta function that ensures conservation of energy, E, i.e.,
Ei ¼ Ef , such that

�hω1 ¼ �hω2 þ �hω3 (Type I) , (27)

�hω1 þ �hω2(3) ¼ �hω3(2) (Type II) : (28)

Equations (24), (25), (27), and (28) provide information about
the allowed three-phonon interactions. They can be used to
quantify the phase space available to one mode (which is also
known as the joint density of states or the two-phonon
density of states) and to the entire system.70 These phase
space measures can be weighted by the Bose-Einstein distri-
bution to include the effect of temperature. Because the
cubic force constants are not used, the phase space measures
do not provide information about the strengths of the
interactions.

Evaluating the matrix elements in Eq. (26) requires

• the mode wave vectors, frequencies, and eigenvectors
obtained from harmonic lattice dynamics (Sec. IV),

• the cubic force constants (Sec. III),
• the mode populations, which are obtained by solving the
BTE as described below.

A mode’s scattering rates for all Type I and II interactions are
then combined to give its lifetime, τα

q
ν

� �
. At this point,

thermal conductivity can be obtained from Eq. (5).
The BTE is solved to determine the mode populations.

Under the RTA, the populations are assumed to follow their
equilibrium distribution (i.e., BE for a quantum system or

Boltzmann for a classical system). Calculation of the lifetimes
under the RTA, which are known as the relaxation times
τRTA

q
ν

� �
, is reasonably straightforward.71

The central assumption underlying the RTA is that both
normal and Umklapp process are resistive and return a
mode’s population to the equilibrium distribution. Normal
processes are, in fact, not resistive and return the popula-
tion to a displaced distribution. When normal processes are
important (e.g., at low temperatures and/or in high thermal
conductivity materials), the RTA can lead to significant
underprediction of thermal conductivity.12,72 In these cases,
the BTE must be solved for the non-equilibrium popula-
tions. A variety of approaches have been developed, which
include iterative,26 variational,27 and direct28 solutions. The
iterative and variation solutions both start from the RTA
and all three solutions should produce the same set of
non-equilibrium populations. It is not typically known a
priori if the BTE solution is required or if the RTA is suffi-
cient. The intrinsic phonon lifetimes obtained from the
BTE solution are direction-dependent and can be negative.
Such a result is possible because the quantities being
solved for are the phonon populations and their deviation
from equilibrium.

The phonon modes are a coordinate transform of the
atomic positions. They correspond to the eigenvalues and
eigenvectors of the dynamical matrix. Cepellotti and Marzari
suggest an alternative transformation based on the eigen-
values and eigenvectors of the collision term in the BTE
[Eq. (2)].73,74 The resulting energy carriers, which they call
relaxons, are superpositions of phonon modes. Relaxons
always decay to their equilibrium distribution and have well-
defined relaxation times and mean free paths. When the
RTA is valid, the phonon modes and relaxon modes are
essentially the same. However, when the RTA is not valid,
relaxons provide a convenient and intuitive way to interpret
thermal transport.

B. Phonon mean free path

The phonon mean free path (MFP) is the average distance
a phonon travels between scattering events. Under the RTA,
the intrinsic MFP is thus

ΛRTA
q
ν

� �
¼ vg

q
ν

� �����
����τRTA q

ν

� �
: (29)

Due to the directional dependence of the phonon lifetimes
obtained from the BTE solution, however, the definition of
the MFP becomes ambiguous.

We are aware of two methods for calculating a MFP from
the BTE solution. In the ShengBTE package,32 the compo-
nents of the mean free displacement vector F q

ν

� �
vector are

defined as

Fα
q
ν

� �
¼ vg,α

q
ν

� �
τα

q
ν

� �
: (30)

The MFP is then defined as the scalar projection of the mean
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free displacement onto the group velocity vector, resulting in

Λ
q
ν

� �
¼

F q
ν

� �
� vg q

ν

� �

vg
q
ν

� �����
����

: (31)

A second method, which we have used in our previous
work,51,75,76 is to use the lifetime corresponding to the direc-
tion of the applied heat flow in the BTE solution for the MFP
calculation. For heat flow in the α-direction, this formulation
results in

Λ
q
ν

� �
¼ vg

q
ν

� �����
����τα q

ν

� �
: (32)

C. Extrinsic scattering

1. Combining scattering mechanisms

A phonon will scatter due to any disruption to the atomic
periodicity. The three-phonon interactions described in Sec.
V A occur because atoms vibrate at finite temperature.
Extrinsic factors can also scatter phonons and should be
included in the calculation of a mode’s lifetime. Scattering
mechanisms can be combined in two ways.

First, all scattering mechanisms, intrinsic and extrinsic
and indexed by i, are assumed to be independent and are
combined using the Matthiessen rule as77,78

1

τ
q
ν

� � ¼
X
i

1

τi
q
ν

� �: (33)

This approach can be used with intrinsic lifetimes obtained
from the RTA or the BTE solution. The applicability of the
Matthiessen rule as related to intrinsic, phonon-boundary,
and phonon-isotope scattering has been investigated. Luisier
found that the Matthiessen rule overestimated the thermal
conductivity of roughened silicon nanowires due to an addi-
tional scattering contribution of localized surface modes
coupled to phonon-phonon scattering.79 Similarly, Feng et al.
reported an overestimation of thermal conductivity calculated
by the Matthiessen rule in bulk silicon that resulted from
a failure to account for coupling between impurity and
phonon-phonon scattering.80

Second, by self-consistently solving the BTE so that the
non-equilibrium populations reflect all scattering mecha-
nisms.57 We have found that including phonon-boundary
scattering in this manner can help with the convergence of
the iterative solution of the BTE for graphene.

2. Phonon-defect scattering

Theory for phonon scattering by a mass defect (i.e., an
isotope) was developed by Tamura using perturbation
theory.81 The formulation is based on an assumption of elastic
scattering, whereby the incident and created phonons have

the same frequency. The inputs to the calculation are the unit
cell, the isotopic masses and concentrations, and the mode
frequencies, eigenvectors, and populations. Energy conserva-
tion is satisfied using a delta function (see Sec. V D 2). This
formulation can also be applied to alloys, as discussed in Sec.
VI C. Theory for scattering by other point defects (e.g., vacan-
cies, impurities, antisites, small clusters)82–84 and disloca-
tions85,86 is emerging.

3. Phonon-electron scattering

Phonon-electron scattering is important in strongly-
doped semiconductors.87,88 The details of calculating the asso-
ciated lifetimes, which require phonon-electron coupling
coefficients, are beyond the scope of this tutorial and can be
found elsewhere.89,90 The electron-phonon Wannier package is
useful for performing calculations related to phonon-electron
interactions.91

Thermal conduction in a metal is due to phonons and
electrons. The phonon contribution can be predicted using
the tools described herein by including both phonon-phonon
and phonon-electron scattering.92,93 The electronic contribu-
tion to thermal conductivity as well as the electrical conduc-
tivity and Seebeck coefficient can be obtained by solving the
electronic BTE and using the Onsager relations.90,92 These
calculations require the electron transport relaxation time,
which is limited by phonon-electron scattering at tempera-
tures � 100-500K for many metals. Electron-impurity and
electron-electron scattering may become important outside
of this range.

4. Phonon-boundary scattering

Phonon-boundary scattering in a nanostructure is the
origin of its reduced thermal conductivity. It is characterized
by the lifetime

τb
q
ν

� �
¼

Λb
q
ν

� �

jvg q
ν

� �
j
, (34)

where Λb
q
ν

� �
is the boundary scattering MFP, which is the

average distance the phonon travels ballistically after its crea-
tion before hitting a system boundary. The phonon-boundary
lifetime can be used in the Matthiessen rule or in the BTE sol-
ution. The boundary scattering MFP can be obtained analyti-
cally for simple geometries by an integration over all possible
starting points for a phonon.94 For a film of thickness L ori-
ented such that the cross-plane direction is z with diffuse
phonon-boundary scattering, it is given by

Λb,film
q
ν

� �
¼ L

2

vg
q
ν

� �

vg,z
q
ν

� �
��������

��������
: (35)

For a wire of diameter D whose axis is oriented along the
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z-direction with diffuse phonon-boundary scattering,

Λb,wire
q
ν

� �
¼ 4D

3π

vg
q
ν

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2g,x

q
ν

� �
þ v2g,y

q
ν

� �s
����������

����������
: (36)

The effect of a partially specular surface can also be included
in the calculations. For more complicated geometries where
an analytical solution is not possible (e.g., a thin film with a
periodic array of pores), ballistic ray-tracing techniques can
be applied.76,95 The use of a single boundary scattering MFP
for a spectrum of phonons, as results from a Casimir limit cal-
culation,78,96 is based on an integration over all propagation
directions and an assumption that all phonons originate at a
boundary (i.e., it represents purely ballistic transport).

Phonon-phonon and phonon-boundary scattering can be
combined without the Matthiessen rule by using the free path
sampling technique.76,97,98 Free path sampling takes the group
velocity vectors and the intrinsic mean free paths as input
and calculates effective mean free paths based on the geome-
try of the structure. For each phonon mode, an ensemble of
free paths are sampled from a Poisson distribution. Each
phonon is started from a random position inside the struc-
ture. The phonon is traced from its origin in the direction
of its group velocity vector until it either reaches the end of
its free path or it encounters a boundary. If the phonon
encounters a boundary, its free path is truncated as the dis-
tance from its origin to the boundary; otherwise, the free
path remains the same. After all the free paths are found, they
are averaged to provide the effective mean free path, which
contains information from both intrinsic scattering and
geometry-specific boundary scattering. This formulation is in
contrast to ray-tracing techniques, where the scattering rates
are calculated separately and then combined using the
Matthiessen rule. In this way, free path sampling avoids the
assumption of independent scattering mechanisms as
changes to the intrinsic mean free path change the boundary
scattering rate and vice versa.

D. Implementation

1. Cubic force constant cutoff

The scattering rate calculation is expensive and strongly
depends on the number of cubic force constants used, which
is set by the cubic cutoff (Sec. III C 4). Cubic force constants
are typically much shorter range than harmonic force con-
stants. As described in Sec. VII B, we set the cubic cutoff by
examining the thermal conductivity convergence.

2. Identifying three-phonon scattering events

It is computationally efficient to identify the three-phonon
phase space (i.e., the sets of three modes that satisfy the
translation invariance and energy conservation constraints)
before calculating the scattering rates. Any calculation of
phonon properties is made on a wave vector grid of finite

(and typically uniform) resolution. While it is straightforward
to exactly satisfy translation invariance, the conservation of
energy constraint requires careful attention. Three tech-
niques have been developed for handling this challenge.

The first technique is to approximate the energy conser-
vation delta function using a Gaussian or Lorentzian function
of fixed width for all three-phonon interactions. When the
width is small, few processes satisfy energy conservation, but
the contribution from each of these processes is high. As the
width is increased, more processes satisfy energy conserva-
tion, but the contribution from each process decreases. There
is thus an optimal width that gives a meaningful value of the
scattering rate.32

The second technique is to use adaptive broadening,
where the delta function is approximated by 71,99

δ(ω) � 1
π

ϵ

ω2 þ ϵ2
, (37)

where ϵ is the broadening parameter and is calculated as

ϵ ¼ 1
2

1

τ
q
ν

� �
1

þ 1

τ
q
ν

� �
2

þ 1

τ
q
ν

� �
3

2
664

3
775: (38)

The delta function is satisfied by providing an initial guess for
the broadening parameter and iterating on the lifetimes until
self-consistency is achieved in the RTA step. This broadening
parameter is kept fixed during the BTE solution.

The third approach is to satisfy energy conservation
exactly based on an interpolation scheme on a tetrahedral
grid.68,100 This approach is computationally cheaper than
the two broadening approaches but is more challenging to
implement.

3. Thermal conductivity convergence with phonon wave
vector grid

Putting aside for now decisions related to the DFT, force
constant, and harmonic lattice dynamics calculations, the
phonon wave vector grid must be varied in order to predict a
resolution-independent thermal conductivity. The general
practice is to increase the grid resolution (and thus the
number of wave vectors) and observe the behavior of the
thermal conductivity. For a cubic system, the wave vector
resolution should be the same in the qx, qy, and qz directions.
For non-cubic systems, we recommend specifying the resolu-
tion such that the volume associated with each wave vector is
a cube.

Three behaviors are possible for how thermal conductiv-
ity changes with increasing the wave vector resolution. They
are related to the complex interplay between the contribution
of modes near the Γ-point and the allowed three-phonon
interactions. First, thermal conductivity converges to a
resolution-independent value, as shown in Sec. VII for silicon.
Second, thermal conductivity increases as the resolution
increases.17,71 Third, thermal conductivity decreases as the
resolution increases.101 Specification of thermal conductivity
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in the first case is trivial. This situation is ideal and should be
displayed in any material, given unlimited computational
resources. Finite computational resources lead to the second
and third cases. In these cases, an interpolation technique
can be applied where the inverse of thermal conductivity is
plotted versus the inverse of the wave vector resolution in
one dimension. The data are fit to a line and extrapolated to
the case of infinite resolution. It is not possible to know
which of these three behaviors will be followed a priori.

E. Comparison of predictions and experimental
measurements

Having laid out the procedure for predicting thermal
conductivity, we now return to Fig. 1. Experimental
measurements1–10 and theoretical predictions11–14 are plotted
for a range of bulk crystalline materials between temperatures
of 0 and 500 K. All experimental samples are naturally occur-
ring (i.e., they contain isotopes) and this effect is included in
the predictions for all materials except SrTiO3 and PbTe. At a
temperature of 300 K, the thermal conductivities range from
2W/mK (PbTe) to 2000W/mK (diamond) and the agree-
ment between measurements and predictions is excellent.

The measurements all follow the same temperature-
dependent trends. At low temperature, thermal conductivity
increases with increasing temperature. Phonon transport in
this regime is limited by boundary scattering due to the
sample size, and the temperature dependence is related to
the specific heat [Eqs. (18) and (19)], following a T3 depen-
dence. There is a maximum in thermal conductivity, followed
by a decrease with increasing temperature. As temperature is
increased, phonon populations increase according to Eq. (4),
leading to increased intrinsic scattering. The thermal conduc-
tivity scaling beyond the maximum is typically T�m, where
1 & m & 2. Around the maximum, phonon transport is sensi-
tive to defect scattering and the maximum thermal conduc-
tivity is strongly related to the sample purity.27,102 This effect
can be seen in the GaN and SrTiO3 data, where two sets of
measurements are presented that agree at higher tempera-
tures but diverge at lower temperatures.

All the predictions start at a temperature of 100 K, which
is common across the available literature. Based on the dis-
cussion in the previous paragraph, we surmise that this
minimum temperature is selected to ensure that the predic-
tions correspond to a regime where intrinsic scattering domi-
nates and defect scattering (here, dominated by isotopes) is a
perturbation. Including isotopic scattering at these tempera-
tures is critical for obtaining the excellent agreement realized
between the measurements and predictions.11,12 In interpret-
ing their predictions for SrTiO3, where the agreement with
the experimental data worsens as temperature decreases,
Feng et al. argue that the presence of defects related to
oxygen vacancies may lead to their overestimation of the
measurements.13 For PbTe, isotope scattering was not
included in the predictions of Shiga et al.14 It is likely not criti-
cal due to the low thermal conductivity and heavy atomic
masses, such that the isotopic mass difference has a smaller

effect compared to the lighter atoms present in the higher
thermal conductivity materials. Recent work by Xia that
included four-phonon scattering (Sec. VI A) and renormaliza-
tion (Sec. VI B) also found agreement with experimental
measurements for PbTe.103 This result suggests that the
agreement found by Shiga et al., who considered only
three-phonon scattering and a zero-temperature structure,
may be due to a cancelation of errors.

Many of the experimental data sets were obtained in the
1960s and terminate at a temperature of 300 K. There is a lack
of high-quality bulk thermal conductivity measurements for
many materials where phonons dominate thermal transport
at higher temperatures. The maximum plotted temperature,
500 K, corresponds to the maximum temperature at which
predictions are typically reported. Above this temperature,
the assumptions of only including three-phonon scattering
and a zero-temperature structure may break down. These
effects are further discussed in Secs. VI A and VI B.

VI. ADVANCED TOPICS

A. Higher-order phonon processes

The discussion in Sec. V A was specific to intrinsic scat-
tering events that involved three phonons. The Taylor series
expansion of the potential energy in Eq. (6) is infinite, such
that scattering events involving more then three phonons are
possible. Recent work has identified the importance of
four-phonon scattering in a range of materials.104–108 Their
role can be assessed by comparing thermal conductivities to
predictions from molecular dynamics simulations, which
include the full anharmonicity of the atomic interactions, or
to experimental measurements.

There are two general situations in which four-phonon
scattering events are important: (i) When strong anharmonic-
ity leads to large atomic displacements, such that atoms
explore a large range of the potential energy surface. This sit-
uation is present in materials that are intrinsically strongly
anharmonic [e.g., Lennard-Jones argon (k � 0:1-1W/mK)104

and NaCl (k � 5W/mK at a temperature of 300 K)107] and in
all materials as temperature increases.104,105 (ii) When weak
anharmonicity leads to low three-phonon scattering rates,
such that the vast number of four-phonon scattering events
makes them important. For example, inclusion of four-
phonon scattering reduces the predicted thermal conduction
of BAs at a temperature of 300 K from 2200W/mK to 1400
W/mK,105 bringing the prediction into agreement with
experimental measurements.108–110 An even larger reduction
has been predicted for single-layer graphene.106

To include four-phonon scattering in the thermal con-
ductivity prediction, a term is added to Eq. (26). As with
three-phonon processes, the four phonons must satisfy con-
straints related to their wave vectors and energies.
Calculation of the scattering rate requires the fourth-order
(i.e., quartic) force constants. The BTE can be solved under
the RTA or by solving for the non-equilibrium populations.
The main challenge associated with including four-phonon
scattering events is their sheer number.
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B. Finite temperature effects

Finite temperature leads to anharmonicity, which has
two effects: thermal expansion and atoms that no longer
oscillate in a harmonic energy well. Thermal expansion can be
captured with a quasi-harmonic calculation, where the finite
temperature lattice constant is used in the harmonic frame-
work. This calculation, however, cannot predict the vibra-
tional structure of phases that are unstable at zero
temperature (e.g., the tetragonal and pseudo-cubic phases of
the lead halide perovskite MAPbI3111). Imaginary frequencies
result, which indicate instability. This information is useful for
understanding phase transitions but prevents calculation of
phonon lifetimes and thermal conductivity.

The instability of the quasi-harmonic description of such
systems is suppressed at finite temperature by anharmonicity.
Finite-temperature force constants are thus required to obtain
the true vibrational structure. One approach is to extract them
from atomic configurations obtained from MD simulations.112–114

A recently proposed technique generates an ensemble of finite-
temperature structures using a stochastic phase space sampling
scheme,115,116 enabling the use of Bose-Einstein (i.e., quantum)
statistics. Finite temperature force constants can also be
obtained from self-consistent calculations.117,118

Finite temperature also changes the phonon frequencies,
which requires a renormalization of the phonon modes. The
renormalization can be performed directly by calculating a
frequency shift from the cubic and quartic force con-
stants58,71,119 or by self-consistently correcting the dynamical
matrix such that corrections are propagated in both the fre-
quencies and eigenvectors.107

C. Alloys

The discussion to this point has focused on predicting
the thermal conductivity of a perfect crystal that may contain
defects and/or be of finite size. The thermal conductivity
prediction workflow can also be applied to alloys, where the
atomic positions follow a lattice structure, but the constituent
species are spatially random. That is, alloys are structurally
ordered but compositionally disordered. The approach is to
model the alloy as a virtual crystal with the disorder included
as a perturbation.

The compositional disorder in an alloy is manifested in
the atomic masses and force constants. The virtual crystal
averages over these properties. First, consider the mass. In
SixGe1�x, the virtual crystal contains one species with a mass
equal to the average of that in the alloy. For In1�xGaxAs, the
virtual crystal contains two species: one that averages over
the In and Ga atoms and the periodic As atoms as the other.
The simplest approach for the force constants is to average
those of the two associate bulk phases based on the composi-
tion. This approach can be applied with DFT or an empirical
potential. A better approach in DFT is to mix the pseudopo-
tentials and then calculate the force constants.

The phonon-phonon scattering rates for the virtual
crystal are then calculated as described in Sec. V A. The effect
of the mass disorder is included using the theory developed

for phonon-isotope scattering described in Sec. V C 2. This
approach has successfully predicted thermal conductivity
measurements for Si1�xGex120 and Mg2Si1�xSnx alloys.57 In
PbTe1�xSex121 and In1�xGaxAs122 alloys, however, an additional
perturbation due to local variations in the force constants is
required.122

The workflow cannot be applied to amorphous materials,
which have long-range structural disorder such that it is not
possible to define a unit cell. A harmonic lattice dynamics
calculation can be applied by treating the computational cell
as the unit cell and performing a Γ-point calculation.123 This
calculation, which imposes a periodicity, provides mode fre-
quencies and eigenvectors. With sufficient computational
resources, the phonon lifetimes could also be extracted, but
such a calculation seems impractical at this time. Because of
the symmetry around the Γ-point, however, all modes will
have zero group velocity (other than the three acoustic
modes) such that a thermal conductivity prediction is not
possible.

VII. CASE STUDY: SILICON

A. Benchmark

Many choices need to be made as part of a thermal con-
ductivity prediction. These choices are related to the DFT cal-
culations, the force constant calculations, the harmonic
lattice dynamics calculations, and the BTE solution. In this
section, we provide benchmarking data for a case study on
isotopically pure silicon. In Sec. VII B, a series of convergence
tests on this system are presented. The DFT and DFPT calcu-
lations are performed with Quantum Espresso37 version 6.0
using the norm-conserving pseudopotential Si.pz-vbc.UPF
and the LDA exchange-correlation functional. The lattice
dynamics calculations and BTE solution are performed using
an in-house code.

For the DFPT benchmark, the electronic wave vector grid
is 8� 8� 8 and the plane wave energy cutoff is 60 Ry. The
minimum energy configuration of the two-atom face-
centered cubic diamond structure is required to specify the
zero-pressure lattice constant. It can be obtained using
Quantum Espresso’s built-in relaxation module. It can also be
obtained by performing single-point energy calculations
around a known starting point (e.g., the experimental lattice
constant). A polynomial is fit to the resulting energies, whose
minimum corresponds to the relaxed structure. Data gener-
ated using this approach are plotted in Fig. 5. A cubic fit to
these data gives a lattice constant of 5.4018 Å.

Dynamical matrices are then obtained from DFPT calcu-
lations. We used a phonon wave vector grid of 8� 8� 8 and a
self-consistency threshold of 10�14. The dynamical matrices
are then mapped to the real-space harmonic force constants
by a Fourier transform, and the phonon frequencies are
obtained from harmonic lattice dynamics calculations. The
resulting dispersion along high-symmetry directions is
plotted in Fig. 6. The 6� 6 dynamical matrices and frequen-
cies for the Γ, X, W, and L points are provided in Sec. S2 of
the supplementary material.
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For the anharmonic lattice dynamics calculations, the
cubic cutoff was set at 4.86 Å, corresponding to atoms up to
and including the third neighbor shell. A set of displacements
of size h ¼ 0:027 Å were applied to atoms in twenty-four
3� 3� 3 supercells generated based on the crystal symme-
tries. The forces were calculated from DFT using a 1� 1� 1
electronic wave vector grid on the atoms of interest. The
cubic force constants were then extracted using finite differ-
ences [Eq. (14)]. Translational invariance was satisfied using a
Lagrangian approach.57 Energy conservation for three-phonon
scattering events was satisfied using adaptive broadening
[Eq. (38)]. For a phonon wave-vector grid size of 24� 24� 24,
the resulting thermal conductivity at a temperature of 300K is
148W/mK from the RTA solution and 152W/mK from the
iterative solution of the BTE. The thermal conductivity accu-
mulation functions under the RTA and iterative solutions are

plotted in Fig. S4 as a function of MFP. The accumulations
resulting from the two definitions of the MFP for the BTE solu-
tion, Eqs. (31) and (32), are indistinguishable. This result should
not be taken as universal, however, as deviations may emerge
in situations where the RTA is a poor assumption and/or the
material is not isotropic.

B. Convergence

In this section, we present results from convergence
tests performed on the isotopically pure silicon case study
from Sec. VII A. Unless noted, the calculation parameters are
the same as those from the case study.

To set the electronic wave vector grid and the plane
wave energy cutoff, the zero-pressure lattice constant for dif-
ferent combinations of these two parameters was calculated.
The results are provided in Table III. Convergence to within
0.0002 Å is obtained for an electronic wave vector grid of
8� 8� 8 and a plane wave energy cutoff of 60 Ry. These
values provide a starting point for the ensuing calculations.
Once the thermal conductivity has been predicted, a further
convergence study starting from these values should be per-
formed to ensure that the thermal conductivity is also con-
verged for these two parameters.51

FIG. 6. Silicon dispersion along high-symmetry directions from DFPT and har-
monic lattice dynamics calculations. The lattice constant is 5.4018 Å. When
scaled by the distance between Γ and X, Γ ¼ (0, 0, 0), X ¼ (1, 0, 0),
W ¼ (1, 0:5, 0), and L ¼ (0:5, 0:5, 0:5).

TABLE III. Zero-pressure lattice constant (Å) as a function of electronic wave
vector grid and plane wave energy cutoff. The values used for the case study are
8� 8� 8 and 60 Ry and the corresponding lattice constant is in bold.

20 Ry 30 Ry 40 Ry 50 Ry 60 Ry 70 Ry 80 Ry

2� 2� 2 5.5486 5.5395 5.5398 5.5398 5.5399 5.5399 5.5399
4� 4� 4 5.4152 5.4136 5.4128 5.4129 5.4129 5.4129 5.4129
6� 6� 6 5.4059 5.4036 5.4029 5.4030 5.4030 5.4030 5.4030
8� 8� 8 5.4044 5.4024 5.4017 5.4018 5.4018 5.4018 5.4018
10� 10� 10 5.4044 5.4023 5.4016 5.4017 5.4017 5.4017 5.4017
12� 12� 12 5.4047 5.4024 5.4016 5.4017 5.4017 5.4017 5.4017

FIG. 7. Silicon thermal conductivity at a temperature of 300 K plotted as a func-
tion of the displacement size used when extracting the cubic force constants.
The value used for the case study is 0.027 Å and the corresponding marker is
filled.

FIG. 5. Variation of DFT energy for silicon versus lattice constant (circles) and a
cubic fit to the data (line). The minimum energy corresponds to the zero-
pressure lattice constant.

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 125, 011101 (2019); doi: 10.1063/1.5064602 125, 011101-15

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


The effect of the atomic displacement size, h, on thermal
conductivity is plotted in Fig. 7. The thermal conductivity
is reasonably invariant for displacements between 0.004
and 0.04 Å.

The cubic cutoff sets the number of cubic force con-
stants and the number of supercell structures. The effect of
the cubic cutoff on the thermal conductivity predicted from
the iterative solution of the BTE is shown in Table IV.
The thermal conductivity predicted for a 2� 2� 2 supercell is
153W/mK and that for a 3� 3� 3 supercell is 152W/mK.
The thermal conductivities predicted using Lagrangian57 and
uniform correction methods to satisfy translation invariance
are both 152W/mK. The variation of thermal conductivity
with the phonon wave vector grid resolution is plotted in
Fig. 8. The thermal conductivity is reasonably converged by
24� 24� 24.

VIII. COMPUTATIONAL PACKAGES

There are many packages available that can predict
phonon properties and thermal conductivity using force con-
stants obtained from DFT calculations. These include
ALAMODE,29 almaBTE,30 phono3py,31 and ShengBTE.32 The
main and differentiating features of these four packages are
provided in Table V.

TABLE IV. Number of displaced structures and resulting thermal conductivity for
different choices of the cubic cutoff. Three neighbor shells are used for the case
study and the corresponding row is in bold.

Cubic cutoff [neighbor
shells/distance (Å)]

# of displaced
structures

k (W/m K) at
T ¼ 300 K

2/4.11 24 150
3/4.86 24 152
4/5.64 32 155
5/6.21 40 151
6/6.75 72 149

FIG. 8. Silicon thermal conductivity at a temperature of 300 K plotted as a func-
tion of the number of phonon wave vectors in each direction of the Brillouin
zone. The value used for the case study is 24� 24� 24 and the correspond-
ing marker is filled.

TABLE V. Features and capabilities of computational packages for predicting phonon properties and thermal conductivity. All of these packages use permutation and space
group symmetries to reduce the number of distinct force constants, can handle long-range interactions, treat phonon-isotope scattering using Tamura’s formulation,81 and
provide mode-dependent Grüneisen parameters, the three-phonon phase space (modal and total), and the spectral thermal conductivity.

ShengBTE32 almaBTE30 phono3py31 ALAMODE29

BTE solution method Iterative, RTA Direct, Iterative, RTA Direct, RTA RTA
Harmonic force constant DFPT, finite difference DFPT, finite difference Finite difference Linear least-squares fitting
Cubic force constant Finite difference Finite difference Finite difference Linear least-squares fitting
Boundary scattering Iterative for nanowire Suppression function for thin

film under RTA
Matthiessen rule with

τ�1
b ¼ jvgj=Lc under RTAa

Matthiessen rule with τ�1
b ¼ 2jvgj=Lc

under RTAa

Frequency shift for cubic
interaction

No No No Yes

Quartic interactions No No No Frequency shift
MFP calculation Eq. (31) Eq. (31) Eq. (29) Eq. (29)
Translational invariance Lagrangian57 Lagrangian57 Uniform correction124 LSE125,b

Energy conservation δ-function Gaussian (adaptive) Gaussian (adaptive) Gaussian (fixed) or
tetrahedron

Gaussian (fixed) or Lorentzian (fixed) or
tetrahedron

DFT compatibility QE,c VASP VASP ABINIT, CRYSTAL,126 QE,
VASP

QE, VASP, xTAPP127,128

LAMMPS129,d Compatibility No No No Yes
Empirical potential compatibility No No No Yes
Unique outputs Superlattice phonon properties Mean square displacement

aLc is a characteristic length specific by the user.
bLeast squares error.
cQuantum ESPRESSO.
dLarge-scale Atomic/Molecular Massively Parallel Simulator.
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IX. SUMMARY AND OUTLOOK

In this tutorial, we described a computational framework
for predicting the phonon contribution to the thermal con-
ductivity of a crystalline solid (Fig. 2). Details related to the
underlying theory and computational implementation were
presented as a means to help researchers who are using avail-
able packages and developing their own codes.

There are many decisions to be made in a thermal con-
ductivity prediction. The specification of parameters such as
the electronic and phonon wave vector grids, the plane wave
energy cutoff, the supercell size, the force constant cutoffs,
and the atomic displacement size can all be checked through
convergence studies, which will provide an associated uncer-
tainty. Our experience is that, while results for other materials
can provide guidance in these choices, every material behaves
differently. It is critical to ensure convergence at all stages of
the framework, from the lattice constant (Table III) to the dis-
persion (Fig. 4) to the thermal conductivity (Fig. 8). In the end,
one seeks a balance between accuracy and computational cost.

The selections of the pseudopotential and exchange cor-
relation functional used in the DFT calculations are more
ambiguous. In this case, approximations associated with their
formulation is a potential source of error when comparing to
experimental measurements. Performing the thermal con-
ductivity prediction for different pseudopotentials and
exchange correlation functionals is one way to assess this
uncertainty.51–53 The GGA-based Bayesian error estimation
functional (BEEF)130,131 includes an ensemble of exchange-
correlation functionals that enables a systematic assessment
of uncertainty in DFT calculations and may be useful in inter-
preting thermal conductivity predictions.131

The computational framework is also limited by its com-
putational demands. The number of distinct force constant
can become very large for unit cells that lack symmetry and/
or have many atoms. Reducing the force constant cutoffs
reduces cost but can impact the accuracy of the predictions.
Including four-phonon scattering is also computationally
demanding.

When comparing predictions to measurements, there are
different reasons for a potential disagreement. As discussed
above, the prediction may not be properly converged (which
the user should be able to ensure), and there are inherent
approximations associated with the DFT calculations and the
solution framework (e.g., if four-phonon scattering and finite
temperature effects are ignored). Furthermore, the quality of
the sample used in the experiment may be unknown (e.g., as
related to defects and doping), such that an accurate inclu-
sion of extrinsic scattering mechanisms may be difficult. In
some cases, thermal transport mechanisms may be present
that are not well-represented by phonons. For example, a
recent study of Tl3VSe4 measured a room temperature
thermal conductivity as 0.30W/mK while predicting a value
of 0.16W/mK.132 In such cases, theoretical and computa-
tional tools may be needed that include mechanisms associ-
ated with disordered materials133,134 or that do not make an
assumption of the existence of phonons.135

While the use of DFT and DFPT calculations to obtain the
force constants is powerful, the importance of empirical poten-
tials should not be overlooked. They allow for an essentially
instantaneous calculation of the force constants. Efforts to opti-
mize existing potentials for thermal transport (e.g., Tersoff and
Brenner for carbon nanotubes and graphene136) and the emer-
gence of potentials based on advanced statistical algorithms137

point to their continued importance in modeling studies.
In looking to the future of thermal conductivity prediction,

important advances continue to be made, notably related to
four-phonon scattering (Sec. VI A), finite-temperature effects
(Sec. VI B), and defect scattering (Sec. V C 2). For describing
materials where phonons are not the only significant carriers
of heat, thermal transport by electrons and magnons138 must
also be included. Finally, while many of the tools are in place, a
rigorous computational framework for predicting interface
thermal conductances that agree with experimental measure-
ments has yet to be realized.

SUPPLEMENTARY MATERIAL

See supplementary material for longitudinal acoustic,
transverse optical, and longitudinal optical dispersion curves
for silicon from DFPT and finite differences; silicon dynamical
matrices and frequencies at high-symmetry points; and the
thermal conductivity accumulation function for silicon at a
temperature of 300K predicted by the RTA and BTE solutions.
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