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ABSTRACT

We investigated the accelerated prediction of the thermal conductivity of materials through end-to-end structure-based approaches employ-
ing machine learning methods. Due to the non-availability of high-quality thermal conductivity data, we first performed high-throughput
calculations based on first principles and the Boltzmann transport equation for 225 materials, effectively more than doubling the size of the
existing dataset. We assessed the performance of state-of-the-art machine learning models for thermal conductivity prediction on this
expanded dataset and observed that all these models suffered from overfitting. To address this issue, we introduced a different graph-based
neural network model, which demonstrated more consistent and regularized performance across all evaluated datasets. Nevertheless, the
best mean absolute percentage error achieved on the test dataset remained in the range of 50–60%. This suggests that while these models are
valuable for expediting material screening, their current accuracy is still limited.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0183513

I. INTRODUCTION

Thermal conductivity (κ) is an important material property crit-
ical in determining the performance and efficiency of devices in
various technological applications such as thermoelectric energy gen-
eration, thermal insulation, and memory storage.1–4 For many of
these applications, low thermal conductivity semiconducting solids
are desired, while for others (such as heat dissipation and micropro-
cessors), materials with high κ are desired.2,5,6 For materials used in
most of these applications, thermal transport is dominated by atomic
vibrations, i.e., phonons, with room temperature κ in the range of
0:1–3000W=mK.7 The traditional search for novel low and high κ
materials is carried out experimentally using a trial-and-error
approach. Lately, it has become possible to use ab initio-driven lattice
dynamics calculations in conjunction with the Boltzmann transport
equation to predict κ of materials.6,8–10 Though these state-of-the-art
quantum-mechanical calculations are instrumental in predicting
correct κ without requiring any fitting parameter,6,9,11,12 the compu-
tational cost of these calculations is very high at several hundred to
several thousand cpu-hours for each material.8 Thus, the application
of such calculations is limited to simple material systems, and compu-
tational exploration of new materials is restricted to the simple substi-
tution of one or two atomic species in known material systems.13–16

Recently, machine learning (ML) approaches have gained sig-
nificance for data-driven exploration and discovery of materials.
The ML models can be trained to learn the material properties/
behavior from known/training datasets and the trained models can
then be used to predict the properties/behavior of new material
configurations. Such approaches have already been used success-
fully to predict the variety of material properties, for instance, ionic
conductance,17 crystal thermal conductivity,18 thermoelectric figure
of merit,19 opto-electronic properties,20,21 mechanical strength,22

nuclear fuel systems,23 and drug discovery.24 For the particular case
of thermal transport, while these approaches are gaining popularity,
they are still limited.25 For instance, Pal et al.26 employed a
scale-invariant ML model to accelerate the search of quaternary
chalcogenides with low κ, Hu et al.27 employed ML to minimize
coherent heat conduction across aperiodic superlattices, Rodriguez
et al.28 trained neural network based interatomic forcefield to do
bottom-up prediction of κ based on intermediate phonon proper-
ties such as mean square displacements and bonding/anti-bonding
characters, Wan et al.29 employed Bayesian optimization to opti-
mize the thermal conductance of graphene nanoribbons, and
Visaria and Jain30 employed neural network based auto-encoders
to do space transformation to search for material configurations
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with low- and high-κ from the exponentially large search space of
considered superlattices.

For direct end-to-end prediction of κ from material crystal
structures, the notable contribution is by Zhu et al.31 where log(κ)
of diverse material systems is predicted using graph neural net-
works and random forest models and coefficient of determination
(R2) of 0:85 and 0:87 are obtained from the two models in a five-
fold validation on the dataset consisting of 132 materials.
Subsequently, Liu et al.32 improved further on this and proposed a
transfer learning approach to train a feedforward neural network
and obtained an improved R2 of 0:83 (compared to 0:67 with
direct learning) on 170 materials in a fivefold cross-validation.

In both studies, however, the obtained performances are
reported for fivefold cross-validation and the performances of these
models on a different, completely unseen dataset, are not estab-
lished. This was primarily done due to the limitation on the avail-
able datasets with only �100 entries. Nonetheless, the evaluation of
ML performance on unseen datasets is critical as (i) these
employed models often have several thousand trainable parameters
and as such, are severely prone to over-fitting for datasets of only
� 100 datapoints, (ii) while optimizing the model performance, the
test dataset is indirectly passed on to ML models via hyper-
parameter tuning, and as such, the performance of model on true
unseen real-world-like data (completely unseen by the ML model)
can be different than that on the test data.

With these in mind, in this work, we first carry out a high-
throughput, ab initio-driven κ calculations to augment the cur-
rently available high-quality κ-dataset by more than twofold from
the current size of 166 to 398 and, next, we develop a graph-based
ML model to reduce the problem of over-fitting in κ prediction of
materials.

II. METHODOLOGY

A. High-throughput κ calculations

While the full details regarding the calculation of thermal con-
ductivity using the Boltzmann transport equation approach can be
found elsewhere,10,12 the thermal conductivity, κα , is obtained as7,33,34

κ ¼
X

i

c ph,iv
2
ατ i, (1)

where the summation is over all the phonon modes in the Brillouin
zone enumerated by i ; (q, ν), where q and ν are phonon wavevector
and mode index, and c ph,i, vα , and τ i represent phonon specific heat,
group velocity (α-component), and transport lifetime, respectively.
The transport lifetimes are obtained by considering phonon–phonon
scattering via three-phonon scattering processes.

The harmonic and anharmonic force constants that are
required as an input to compute phonon dispersion and phonon
scattering rates are obtained from density functional perturbation
theory (DFPT) and density functional theory (DFT) calculations as
implemented in the openly available quantum mechanical simula-
tion package Quantum Espresso.35,36 The plane wave-based basis
set with norm-conserving Vanderbilt pseudopotentials37 and the
plane wave kinetic energy cutoff is set at 80 Ry in all calculations.
The structure relaxations are performed using primitive unit cells

and the electronic Brillouin zone is sampled using a Monkhorst–
Pack wavevector grid of size ki such that ki:japri

i j � 30Å, where
japri

i j represents the length of primitive unit cell lattice vector a pri
i .

The electronic total energy is converged to within 10�10 Ry/atom
during self-consistent cycles and the structure relaxations are per-
formed with a force convergence criterion of 10�5 Ry/Å.

The harmonic force constants and Born effective charges are
obtained using DFPT calculations on primitive unit cells. The
DFPT calculations are initially performed on phonon wavevector
grids of size qci such that qci :japri

i j � 30Å and are later interpolated

to grids of size qfi such that qfi :japri
i j � 100Å for three-phonon

scattering calculations. The anharmonic force constants are
obtained from Taylor-series fitting of Hellmann–Feynman forces
obtained on 200 thermally populated supercells (corresponding to
a temperature of 300 K) obtained from Ni repetitions of the con-
ventional unit cell such that Ni:jaconvi j � 15Å. The cubic force
constant interaction cutoff is set at 6:5 Å for the majority of com-
pounds, though for some compounds with lower symmetries, this
value is reduced to 5:0Å.

The material screening process for selecting compounds on
which κ calculations are carried out is detailed in Fig. 1. Starting

FIG. 1. The filtering criterion employed to select a pool of stable ternary
semiconductors from the Materials Project database38 for ab initio-driven
high-throughput computation of phonon thermal conductivity.
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with all ternary compounds from the Materials Project38 within the
orthorhombic, tetragonal, trigonal, hexagonal, and cubic space-
groups, resulting in a total of 42 511 compounds, compounds con-
taining lanthanides and actinides, noble gases, and precious metals
(Au, Pt, Pd, Ir, Ru, Re, Rh, Hg, Hf) are removed, and the
maximum atomic number of participating species is restricted to
83. Further, strongly ionic compounds formed by halides, oxides,
and hydrides are also removed. Since the focus here is on the
phonon thermal transport in semiconductors and insulators, com-
pounds with electronic bandgap lower than 0:2 eV (as obtained
from GGA-based DFT in the Materials Project) are also removed.
The materials are further filtered on the basis of thermodynamic
stability to have energy above the convex hull (with respect to all
reported materials in the Materials Project) less than 0:2 eV/atom.
Finally, considering the N4

atom scaling of computational cost for
thermal conductivity calculations,10 compounds with more than 15
atoms in the unit cell are also removed. Of the total of 429 filtered
compounds, during structure relaxation and dynamical stability
calculations, 197 compounds are further dropped due to the pres-
ence of imaginary phonon modes and/or non-convergence of self-
consistent functional calculations, and the full thermal conductivity
calculations are carried out for 232 compounds.

B. Machine learning models

1. Feed-forward neural network

For the feed-forward neural network (NN), we employed
three fully connected layers with a random number of neurons in
the first two layers (between 60 and 90 in the first layer and
between 20 and 50 in the second layer), and 10 neurons in the final
layer with 40 different seedings for initial weights. We generated
360 such models with different combinations of neurons and seed-
ings. We employed Rectified Linear Unit (ReLU) as the activation/
non-linear function and used Adam optimizer39 with a learning
rate of 0:001 and a batch size of 85. The training is done on 500
epochs with mean absolute error (MAE) loss. For direct feed-
forward NN, the weights were randomly initialized from a standard
normal distribution while for transfer-learning feed-forward NN,
the weights are initialized by pre-training the network on a low-
fidelity dataset (discussed in Sec. III). This selection of network
architecture is similar to that employed in Ref. 32

2. Graph-based neural networks

For graph-based neural networks, we employed three different
implementations: (a) crystal graph convolution neural network
(CGCNN),40 (b) materials graph network (MEGNet),41 and (c) our
own implementation (referred to as GNN). All three of these
models are graph-based convolution neural networks and they
differ in the implementation of node, edge, and/or state features.
For instance, while CGCNN and GNN only have node and edge
features, MEGNet also have state features. Similarly, while CGCNN
employs one-hot encoding (of length 9) based on interatomic dis-
tance for edge features, MEGNet and GNN use only one attribute
corresponding to actual value of interatomic spatial distance for
edge features. The CGCNN and MEGNet are employed with

default settings with MAE loss and further details on their imple-
mentation can be found in Refs. 40 and 41.

In GNN, each node represents an atomic site (i) in the unit
cell with atomic number and position (reduced coordinates) as the
node features. The edges represent atomic neighbors within 5 Å
distance. The atomic numbers are embedded to a vector of length
10 using pytorch embedding42 which is passed through a non-
linear layer to obtain an initial node representation. The node posi-
tion (Xi) and neighbor position (Xj) give the neighbor’s distance
vector (Xj � Xi), which is passed through a non-linear layer fol-
lowed by a mean pooling to obtain a consolidated neighbor vector
of node (i). Finally, node and neighbor vectors are concatenated
and passed through a non-linear layer to obtain an updated node
representation. This process of obtaining node embedding is
repeated three times, and in the third iteration, the lattice parame-
ters (α, β, γ, a, b, c) are concatenated with the consolidated neigh-
bor vector to obtain a final node representation. The final node
embeddings are passed through mean and variance pooling fol-
lowed by a fully connected layer to obtain a prediction for κ. The
GNN model is trained with ReLU activation and MAE loss using
an Adam optimizer with a learning rate of 0:0001.

3. Random forest and gaussian process

For random forest (RF) and gaussian process (GP), we
employed the implementation of Sklearn.43 For RF, we employed
50 tress and 40 distinct random states. For GP, we employed a
composite kernel by adding three kernels (Radial Basis Function
kernel,44,45 Constant Kernel,44,45 and White Kernel44,46,47) and
optimized kernel hyper-parameters with the COBYLA method as
implemented in Sklearn.43 In contrast to other ML methods, GP
also provides confidence on predicted values, which is useful in
establishing the uncertainty of predicted κ.

C. Material fingerprints

For NN, RF, and GP, we generated a material fingerprint
using elemental and compound features. For elemental features, we
computed five statistical properties (mean, maximum, minimum,
etc.) of 12 elemental properties (atomic number, electronegativity,
atomic weight, etc.) of each participating element by employing the
Matminer48 ElementProperty interface with ”magpie” data source
to obtain elemental property vector of length 60. This elemental
property vector is concatenated with three compound properties:
space group, volume, density, and two Matminer’s48 IonProperty
(mean and maximum of ionic character) to obtain a final material
fingerprint of length 65. For graph-based models, the crystal struc-
tures are passed directly to the models, and the material finger-
prints are determined internally by the models.

III. RESULTS

A. Thermal conductivity datasets

We considered three κ-datasets: (i) low-fidelity (LF) dataset
consisting of 1507 materials with thermal conductivity obtained
using a semi-empirical model,32 (ii) high-fidelity (HF) dataset con-
sisting of 166 materials whose thermal conductivities are reported
in the literature from either experimental measurements or from
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first-principle calculations,32 and (iii) high-throughput (HT)
dataset consisting of 232 ternary materials whose thermal conduc-
tivities are obtained using the full ab initio calculations with the
same computational setting for all materials as detailed in Sec. II A
(see Fig. 2). The data contained in LF and HF datasets are isotropic,
while the data in HT dataset are direction resolved. As such, to stay
consistent with other datasets, we performed directional averaging
of κ for HT dataset and report all results for direction-averaged
mean κ. The LF and HT datasets have similar κ distribution and
have most materials with κ between 1 and 20W/mK. In compari-
son, the HF dataset is centered between 10 and 100W/mK and
have larger number of compounds with high κ. It is worthwhile to
emphasize here that even though the size of employed datasets in
this study is � 100, these are among the largest high-quality data-
sets available for κ. On top of a large 3–4 orders of magnitude
span of material κ values, this scarcity of data also makes ML for κ
more challenging compared to other material properties.

B. Evaluation metrices

The performance of ML models is generally characterized on
hold-out test datasets consisting of 10%–30% of the total data,
using metrics such as mean absolute error (MAE), mean square
error (MSE), root mean square error (RMSE), coefficient of deter-
mination (R2), and mean absolute percentage error (MAPE). For
properties such as formation energy, electronic bandgap, mixing
entropy, etc., the entire range of predicted property is less than an
order of magnitude and all of these performance metrices are ade-
quate. For κ, the range is over four orders of magnitude and, as
such, the choice of performance metric is not obvious.

To illustrate this on real κ-dataset, we plot the model perfor-
mances of four hypothetical models on LF dataset in Fig. 3. In
Fig. 3(a), we considered a model that is able to perfectly predict all
high-κ points and results in a random prediction for low-κ materi-
als and in Fig. 3(b), we have a model with perfect prediction for
low-κ materials and a random prediction for high-κ materials. For
Fig. 3(a), even though the predictions are random for all low-κ
materials, the obtained R2 value is high at 0:97, while in Fig. 3(b),
when randomization is applied to high-κ points instead, the R2

value is negative; thus demonstrating the bias of R2 toward large
value datapoints. Similarly, in Figs. 3(c) and 3(d), the considered
models predict random values for low-κ datapoints but they differ in
that while model in Fig. 3(c) under-predicts, the model in Fig. 3(d)
over-predicts these low-κ datapoints. Since the performance is
perfect for all high-κ datapoints, the obtained R2 is close to unity in
both cases. However, for MAPE, while the obtained value is low at
only 10% for Fig. 3(c), the value is much higher (93%) for Fig. 3(d);
thus, indicating the bias of MAPE to underpredict datapoints.

To account for this challenge arising from κ spanning over
multiple orders of magnitude, the model performance for κ predic-
tion is often evaluated on a log-scale where log-κ varies in the
range � �1 to 3. However, this scale is also tricky as the predic-
tions that look good on log-scale are actually severely off due to the
exponential nature of this scale. For instance, the predicted log-κ
for diamond of 3:7 compared to the experimentally measured value
of 3:4 is off by 100% even though the difference is less than 10%
on the log-scale.

FIG. 2. The number distribution of κ in (a) low-fidelity,32 (b) high-fidelity,32 and
(c) high-throughput datasets.
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In this work, we report MAE on log κ [MAE(log(κ))], MAPE,
and R2 [on κ and log(κ)] for all models and we compare model
performances based on MAE(log(κ)).

C. Thermal conductivity prediction

We start by first testing the performance of the trained NN
model on the new HT dataset. For this, we pre-train the NN model
on the LF dataset and then employ transfer learning and train the
model on the HF dataset. We find the model performance in five-
fold cross-validation on the HF dataset is 0.86 [R2(κ)], which is
similar to that reported by Liu et al.32 [R2(κ) of 0.83]. However,
when this trained NN model is used to predict κ of materials from
the HT dataset, the obtained prediction performance is unsatisfac-
tory with MAPE(κ) of 311%, R2( log κ) of �0.41, R2(κ) of �8:00,
and MAE(log κ) of 0.44. As discussed above, this is primarily
owing to the small dataset size of the HF dataset. As such, the HF
and HT datasets are combined in this study and model perfor-
mances are evaluated on this combined HF/HT dataset.

We train the considered ML models on the LF dataset and
evaluate their performance for the prediction of κ on HF/HT data-
sets (Fig. 4). We find that all ML models can fit the κ variation in
the LF dataset correctly with test MAE(log(κ)) of 0:16 or less. The
best train performance is by GPR and NN models, each with test

MAE(log(κ)) less than 0:14. As emphasized above in Sec.II B, we
find that, even though all ML models have test MAE(log(κ))
between 0:14–0:16, the R2 varied between 0:57 and 0:83 depending
on the quality of fit of high κ datapoints, thus further highlighting
the limitations of R2 as the performance metric. Note that this limi-
tation is an outcome of orders of magnitude scale of κ and when
R2 is evaluated on log κ, the obtained value is between 0.81 and
0.88 for all considered models.

When we use these trained models to predict κ of materials
from HF/HT datasets, we find that the MAE(log(κ)) of all models
is high at . 0:38. Nevertheless, considering that the LF dataset is
derived based on empirical relations and is not a true representative
of DFT result/experimental measurements (data in HF/HT data-
sets), it is impressive to see that all considered models can capture
the overall general trend of κ. The best performance is by the GNN
model with MAE(log(κ)) of 0:38. This same model also resulted in
the best generalization between the two datasets as can be estimated
based on the ratio of prediction MAE(log(κ)) on HF/HT datasets
to test MAE(log(κ)) on the LF dataset. Noticeably, this ratio is only
2:35 compared to more than 2:6 for all other models. Furthermore,
the GPR and NN models, which resulted in the best performances
in testing on the LF dataset, delivered the worst generalization with
prediction MAE(log(κ)) of 0:43 and 0:41 on the HF/HT dataset;
thus suggesting potential over-fitting by these models compared to
learning of general trends by the GNN model. It is worthwhile to
note here that the number of trainable weights in GNN and NN
are similar (between 7000 and 10000), and, as such, the regularized
performance by GNN is due to its specific architecture as presented
in Sec. II B.

Next, we train the considered ML models directly on HF/HT
datasets (total of 398 datapoints) and evaluate model performances
on the hold-out dataset (Fig. 5). We generated the train-test split
by sorting the materials by their κ and by placing every fifth entry
from this sorted list in the test dataset (80:20 split) for all models.
During training, we find that the MAE(log(κ)) for RF, GPR, NN,
and MegNet models reduced compared to their corresponding test
values for the LF dataset. For instance, for NN, the MAE(log(κ))
reduced from 0:14 for testing on the LF dataset to 0:04 for training
on HF/HT datasets. This reduction is understandable as the
number of datapoints used in HF/HT training is only 398 com-
pared to 1507 on the LF dataset. Surprisingly, for GNN and
CGCNN, this is not true, and the MAE(log(κ)) is higher for train-
ing on HF/HT datasets than for testing on the LF dataset. Both
GNN and CGCNN resulted in MAE(log(κ)) higher than 0:21 (0:21
and 0:25, respectively) during training on the HF/HT compared to
less than 0:10 by all other models. This large MAE(log(κ)) from
GNN and CGCNN seems to suggest the inferior performance of
these models compared to other models, but when we employed
the trained models to predict κ of hold-out test dataset (75 data-
points), we found all models resulted in test MAE(log(κ)) . 0:25,
thus suggesting over-fitting by all models. Compared to other
models, for GNN and CGCNN, the over-fitting is less pronounced.
For GNN and CGCNN, the test errors are only 36% and 46%
larger than the corresponding train errors, but for RF, GPR, NN,
and MeGNet, the test errors are 161%, 571%, 166%, and 1411%
larger than the train errors. For NN, we also included regulariza-
tion via the Dropout method49 (after first hidden layer) with 20%

FIG. 3. The variation of various performance metrics when model predictions
are: (a) perfect on all high κ (κ . 10 W/m K) and random on low κ
(κ � 10 W/m K), (b) perfect on all low κ and random on high κ, (c) perfect on
all high κ and underprediction on low κ, and (d) perfect on all high κ and over-
prediction on low κ. The considered datapoints are from LF dataset having the
actual distribution of κ values. The R2(κ) is biased toward high-value datapoints
and MAPE(κ) is biased toward overprediction of actual values.
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and 50% dropout rates, but in both cases, we found that the
obtained test error was . 160% larger than the training error.

Compared to other models, in general, we find that the perfor-
mance of graph-based GNN and CGCNN is regularized for
end-to-end κ prediction. For GNN, we find that the performance is
better than CGCNN. We believe that this is due to two major

architectural differences between GNN and CGCNN: (i) the graph
edges are represented using the actual neighbor distances in GNN
as opposed to one-hot encoded vectors in CGCNN and (ii) the
pooling employed in GNN preserves edge features to a larger
extent by employing both mean as well as variance pooling as
opposed to only mean pooling in CGCNN.

FIG. 4. The prediction performance of considered ML models on: (top panels) 20% of holdout compounds from the LF dataset and (bottom panels) HF/HT datasets. All
models are trained on 80% of the LF dataset consisting of the same set of compounds. Without seeing any material from the HF/HT datasets, while all ML models are
able to capture the general κ trend of these datasets (bottom panels), the best performance is obtained from the GNN model.

FIG. 5. The training (top panels) and testing (bottom panels) performance of considered ML models on HF/HT datasets. All models are trained on 80% of the HF/HT data-
sets consisting of the same set of compounds. GNN and CGCNN deliver the best-regularized performances, while all other models suffer from over-fitting.
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Motivated by this impressive performance of GNN, along
with its associated regularization, we explore the effect of transfer
learning on GNN by pre-training it first on the LF dataset, followed
by training on the HF/HT datasets (Fig. 6). For reference, we also
included the NN model. As suggested by Liu et al.32 for NN, we
find that the prediction performance of GNN also improves with
transfer learning. The test MAE(log(κ)) from GNN is reduced to
0:25 with transfer learning, which is similar to that from the NN
model.

For materials exploration, it is imperative to have a confidence
interval on the predicted value of κ from ML models. For the GPR
model, the confidence intervals are analytically obtained from the
model itself depending on the kernel similarity between train and
test datapoints. However, as shown earlier, for κ prediction, GPR
results in a severe over-fitting and the predicted κ from GPR model
is out of one standard deviation bounds for a large number of test
datapoints in Fig. 5. As an alternative, we pick the predicted κ vari-
ation between different ML models to measure confidence bounds.

In Fig. 7, the predicted κ for test materials from HF/HT data-
sets is re-plotted by combining predictions from RF, NN, GNN,
and CGCNN models (GPR and MEGNet are omitted as both of
these models result in severe over-fitting with test error being more
than 500% larger than the train error). The lower/upper bounds
are obtained by taking the minimum/maximum over all models,
and the predicted value is obtained by taking the average of all
models. Further, the materials for which true κ falls outside the
lower/upper bounds are highlighted using empty markers in Fig. 7.

With this combined model, we find that the prediction perfor-
mance is further improved and MAE(log(κ)) is reduced to 0:23.
Further, the actual κ falls within this combined model’s lower/
upper bounds for around 50% of the 75 materials tested in Fig. 7.

Finally, we also tested the performance of trained ML models
on some of the recently reported materials from the literature50–59

after ensuring that these materials are not a part of any of the data-
bases employed in model training/testing. We report these perfor-
mances in Fig. 8. The predictions that fall within 50% of the

literature-reported values are indicated using filled circles, while
those falling outside of 50% are indicated using open circles in
Fig. 8. We find that for extremely low κ, while predicted trends are
right, all model predictions are off by more than 50% from the
literature-reported values. This is, however, understandable as
the lowest κ in our training dataset is 0:47W/mK. Surprisingly,
the NN model seems to predict values between 1 and 2W/m K for
all materials and results in a severe under-prediction for intermedi-
ate κ materials (with κ . 4W/mK in Fig. 8). For materials with
κ . 0:47W/m-K, the GNN predictions are off by more than 50%
only for two materials as compared to five by RF and CGCNN;
thus, further highlighting the superior performance of GNN com-
pared to all other ML models employed in this work.

IV. DISCUSSION

The application of ML methods for thermal transport can be
broadly classified into three categories. In the first kind of applica-
tion of ML for thermal properties, instead of direct prediction of
κ/thermal properties, the interatomic forcefields are trained on
DFT forces/energies and these trained forcefields are used in con-
junction with approaches such as molecular dynamics simulations,
lattice dynamics calculations, etc. to predict the thermal properties.
These DFT-trained ML forcefields offer the advantage of capturing
the right thermal transport physics (depending on the approach)
and other than the employed approach, the accuracy of results
depends entirely on the accuracy of the trained forcefield (which
can now approach the same accuracy as that in DFT60). Further,

FIG. 6. The effect of transfer learning (TL) on the prediction performance of
(left) NN model and (right) GNN model. In direct learning (DL), the models are
directly trained on the HF/HT datasets while in TL, the models are first pre-
trained on the LF dataset and are later re-trained on the HF/HT datasets. The
reported performances are on the 20% of the hold-out dataset.

FIG. 7. The prediction performance of the combined model on 20% of holdout
HF/HT datasets. The predicted values are taken as mean of RF, NN, GNN, and
CGCNN models and the plotted lower/upper bounds are minimum/maximum
predictions from these models.
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this DFT-trained ML forcefield is generic and it could be employed
to predict other material properties of a given system. However,
this trained forcefield is not transferable and specific to a given
material(s) (for which it is trained). Further, one needs to look into
the computational cost of data generation for this forcefield train-
ing compared to the speedup obtained from employing this force-
field for studying thermal properties.

Alternatively, ML can be used to explore the chemical/config-
uration space of a given material system to identify hidden trends
and later employ the knowledge gained in this exploration to iden-
tify configurations with desired properties. The objective in this
approach is to learn the property trends over a large configuration
space (potentially exponentially large), which is otherwise difficult
to obtain. Examples of such applications include the study by Hu
et al.27 to minimize coherent conduction across aperiodic interfaces
and the study by Visaria and Jain30 to explore high/low thermal κ
materials from exponentially large search of graphene composed of
light/heavy carbon atoms.

Finally, the ML can also be used to directly predict κ from the
material structure or some other intermediate thermal/material
property (such as heat capacity, speed of sound, etc.). While the
direct prediction of κ from the structure is a holy grail for the dis-
covery of low/high κ solids for various applications, it is currently
limited due to the availability of only a sparse amount of data,

which is insufficient in exploring the entire chemical space of inor-
ganic materials. While approaches such as transfer learning are
useful in such scenarios, our study suggests that the application of
such approaches for κ have, so far, resulted in the best MAE(log
(κ)) of 0:23 and R2( log (κ)) of 0:81 with MAPE of around 55%.

V. CONCLUSIONS

In summary, we explored the possibility of end-to-end struc-
ture to thermal conductivity prediction of materials using various
machine learning approaches. Due to the scarcity of available
thermal conductivity data, we first carried out high-throughput
first-principles-based Boltzmann transport equation-driven predic-
tion of the thermal conductivity to augment the currently available
dataset from a current size of 166 to 398 materials. We tested
various performance evaluation metrices and found that all linear-
scale evaluation metrices are biased either toward under-prediction
or toward high-value datapoints. We find that literature-reported
best machine learning models are prone to over-fitting due to scar-
city of data and we proposed a new graph-based network architec-
ture capable of delivering more regularized and consistent
performance across considered smaller size thermal conductivity
datasets. Transfer learning by first training the models on larger
size, lower accuracy dataset improves model performance but the
best-obtained performance from considered models is limited to
mean absolute percentage error of � 60%, even on an augmented
dataset (which has more than twice as many entries as the largest
reported datasets available in the literature) with the newly pro-
posed graph model (which delivers superior performance com-
pared to all other models); thus suggesting that while machine
learning can be used for initial screening of materials, the currently
obtainable accuracy for end-to-end thermal conductivity prediction
is limited to 50%–60%. The further improvement in performance
beyond this requires larger thermal conductivity datasets and/or
incorporation of intermediate atomic/thermal properties (such as
thermal displacements of atoms) in the machine learning model.
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