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A B S T R A C T

The calculation of phonon-phonon scattering rates is a computational bottleneck in first-principles based phonon thermal conductivity prediction of materials. Here,
we report a machine learning approach for phonon scattering rates prediction which is capable of predicting thermal conductivity by employing only 5 % of the total
computational cost. We test this approach on more than 200 diverse materials and found that when this approach is combined with that of Guo et al. [npj Computa-
tional Materials 9, 95 (2023)] for phonon-phonon linewidth prediction, the cumulative speed-up is more than two orders of magnitude while the accuracy of thermal
conductivity prediction is preserved to within 10 %. This drastic speedup is translated into computational time reduction for phonon scattering rates calculation from
more than 60,000 cpu-hours to less than 500 cpu-hours for considered 230 materials.

The fast and accurate prediction/determination of lattice thermal
conductivity (κ) of materials is crucial in the discovery of new materials
for applications such as thermoelectrics, thermal barrier coating, and
heat dissipation [1–4]. The conventional search of materials with de-
sired κ is via an experimental trial-and-error approach. Recently, with
advances in computational resources, it has become possible to predict
the κ of materials via the Boltzmann transport equation (BTE) approach
with input from ab-initio calculations [5–9]. Such calculations have
been reported in the literature for simple and complex materials and an
excellent agreement with experiments is obtained, where possible
[6,7,10]. The computation of κ via the BTE approach requires inter-
atomic force constants and phonon-phonon scattering rates and the lat-
ter is a computational bottleneck in κ prediction of many material sys-
tems [11]. For instance, the calculation of phonon scattering rates for
clathrates requires evaluation of three-phonon scattering
processes with a total computational time of cpu-hours. This
high computational cost of three-phonon scattering rates calculation se-
verely hinders the high-throughput discovery of materials and requires
new methodology developments. Guo et al. [12] made significant ad-
vances in this regard and proposed a neural network machine learning-
based model for prediction of scattering linewidths by training the
model on a small fraction of processes for which linewidths are actually
computed. The authors showed that while the linewidths of individual
processes obtained from the model are less accurate [coefficient of de-
termination, R2 < 0.5] the total scattering rate of a given phonon mode
(obtained by summing over all processes) are accurate with R2 ≥ 0.9

and the associated prediction error for κ < 10 %; thus facilitating accu-
rate prediction of κ, along with its spectral dependence, while having a
computational speed-up of 4x (70x for four-phonon processes). In their
recent work [13], the authors further expanded on this and suggested a
Maximum Likelihood Estimator (MLE) model based on the average
linewidth of training datasets to replace the machine learning model
and provide similar accuracy with additional speedup.

In this work, we develop further on these approaches and report an
additional 20x reduction in computational time for κ prediction while
maintaining the accuracy of predicted κ to within 10 % of the actual
values. Our approach is complimentary to that by Guo et al. [12] and
when combined together, the accuracy of κ-prediction and its spectral
dependence is preserved to within 10 % while the computational time
for phonon scattering rates calculation is reduced drastically by more
than two orders of magnitude.

The phonon contribution to κ of material in the α-direction (κ
α
) is

obtainable using the BTE along with the Fourier's law as [14–16]:

(1)

where the summation is over all phonon modes, c
λ

is the phonon
specific heat, v

λ,α is the α component of phonon group velocity vector v
λ
,

and τ
λ,α is the phonon scattering time. The phonon heat capacity and

group velocity are obtained from phonon dispersion obtained by diago-
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nalizing the phonon dynamical matrix [15,17]. The phonon scattering
rates are obtained by considering the three-phonon as [15,16]:

(2)

The details regarding the calculation of phonon linewidth for three-
phonon scattering processes, Γ(λ, λ′, λ″), are presented in Refs. [8,18].

The computation of κ via Eqn. (1) requires phonon properties for all
phonon modes (typically 10, 000 − 50, 000) in the Brillouin zone.
However, all phonon modes are not independent and these calculations
are carried out only for symmetry-unrelated (reduced/unique) phonon
modes. For instance, for computation of κ in silicon with 32 × 32 × 32
phonon wavevector grid and two atoms in the primitive unitcell, only
5382 phonon modes (2.75 %) are symmetry-unrelated of the total of
196608 modes requiring 25 cpu-hours for phonon scattering rates com-
putations, while for type-I filled clathrates with 8 × 8 × 8 phonon
wavevector grid and 54 atoms in the unitcell, 14580 modes (17.5 %)
are symmetry-unrelated of the total of 82944 modes requiring 1370
cpu-hours for phonon scattering rates computations (by considering
only three-phonon scattering).

Our machine learning (ML) approach is driven by realizations that
(a) some phonon properties, such as vibration frequency, heat capacity,
mode localization, Grüneissen parameter, etc. are relatively cheaper
(by 100x-10000x) to compute (referred to, hereafter, as fast-to-
compute properties) than the phonon scattering rates and (b) phonon
scattering rates computations are needed for ∼ 5000-15,000 phonon
modes for typical materials even after symmetry reductions. Accord-
ingly, we propose to evaluate fast-to-compute phonon properties for all
phonon modes and scattering rates only for a fraction of symmetry-
unrelated phonon modes. Subsequently, these fast-to-compute phonon
properties can be employed as the phonon mode descriptor to train ML
model on computed phonon scattering rates. Finally, the trained model
can be used to predict scattering rates for the remaining symmetry-
unrelated modes.

We test our proposed approach for silicon and type-I filled clathrate
(Ba8Ga16Ge30) in Fig. 1. For this, we employ a simple random forest ML

Fig. 1. The predicted phonon scattering lifetimes for (a), (b) silicon and (c), (d)
Ba8Ga16Ge30 using (a), (c) 5 % and (b), (d) 25 % of the symmetry-unrelated
phonons in the ML training dataset. The predictions are made by training a ran-
dom forest ML model with 100 trees. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this ar-
ticle.)

model with 100 trees [19]. We first evaluate fast-to-compute phonon
properties for all phonon modes and sort symmetry-unrelated phonon
modes on the basis of their vibration frequencies. We sample the de-
sired fraction of modes uniformly from this sorted list and train the ML
model by employing phonon vibration frequency, heat capacity, mode
localization, and Grüneissen parameter as the mode descriptor. We
tested training the model on log(τ), τ0.4, and τ0.01 (by employing the
same distribution of phonon modes) and found τ0.01 to result in the best
performance. The phonon scattering rates/lifetimes obtained by em-
ploying 5 % and 25 % of the symmetry-unrelated phonon modes in the
training data are reported in Fig. 1. We find that while R2[log(τ)] (for
prediction) is lower than 0.95 when 5 % of symmetry-unrelated
phonons are used in the training data, the R2[log(τ)] increases to more
than 0.95 with the inclusion of 25 % of symmetry-unrelated phonons in
the training dataset for both materials; thus, suggesting a 4x saving in
computational cost for phonon scattering rates calculations with the
use of ML model.

Motivated by this, we next test the performance of ML model for κ-
prediction by training the model on varying fractions of symmetry-
unrelated phonon modes. After obtaining τpredict on all symmetry-
unrelated modes, we map them to the full list of phonon modes to ob-
tain the κpredict of the underlying material. The obtained κpredict and R2

[log(τpredict)] with varying amount of training data are reported in Fig. 2
for silicon and Ba8Ga16Ge30.We find that the obtained κpredict are within 10 % of κactual even with
inclusion of only 5 % of the total symmetry-unrelated phonon modes in
the ML training for both silicon and Ba8Ga16Ge30. With an increase in
the fraction of training data, the prediction error decreases and falls be-
low 5 % with the inclusion of 25 % of phonon modes in the training of
the ML model.

It is worthwhile to note that the κ obtained from the BTE approach
typically have uncertainties of around 10 % owing to choices of various
numerical parameters (phonon wavevector grid, broadening, cutoffs,
etc) [20]. As such, the accelerated prediction of κ with 10 % accuracy
with the inclusion of only 5 % of phonon modes in the training data is
extremely promising and suggests 20x saving in the computational cost
for phonon scattering rates. To test if such speed-up in κ prediction is
obtainable for a wider variety of materials, we report κpredict of 230 dif-
ferent ternary materials in Fig. 3. The κ of these considered materials
span around three orders of magnitude and was obtained using the
high-throughput density functional theory calculations as detailed in
Ref. [21].

We find that, as shown in Fig. 3, our ML model performance is amaz-
ingly good across all considered materials: as with silicon and
Ba8Ga16Ge30, the mean absolute percent error (MAPE) obtained across
all materials is 10 % with inclusion of 5 % of the symmetry-unrelated
phonons in ML training and falls below 5 % with inclusion of 25 % of
data in the training; thus confirming a 4-20x speed-up in κ prediction
across a wide range of materials. To pinpoint the beneficial role of the
ML model, we also computed κ of considered materials by employing a
coarser phonon wavevector grid consisting of a similar number of
phonon modes as that in the training dataset of the ML model. We find
that the κ obtained using these coarse grids have MAPE of 19 % with
5 % phonon modes compared to only 10 % from the ML model; thus
suggesting that the improved performance from the ML approach is ow-
ing to learning of underlying phonon physics by the ML model.

In the ML approach recently reported by Guo et al. [12], the authors
trained a ML model on phonon linewidths and found that even though
phonon-phonon scattering linewidths are less accurate [R2(Γ(λ, λ′,
λ″)) < 0.5], the total scattering rates are accurate with R2(τ

λ
) ≥ 0.9.

The approach employed by Guo et al. [12] (ML-Γ) is fundamentally dif-
ferent from our approach (ML-τ), and the two approaches are comple-
mentary to each other and could be combined [ML-(τ, Γ)] to obtain cu-
mulative computational speed-ups. To demonstrate this, we follow the
following procedure [see Fig. 4(a)]:
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Fig. 2. The variation of ML predicted κ (filled markers) of (a) silicon and (b)
Ba8Ga16Ge30 with training dataset size. The corresponding prediction errors on
phonon scattering rates (R2[log(τpredict)]) are reported on the secondary y-axis
(open markers). The actual κ values and 5 % variations around actual values are
indicated using solid and dashed lines. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this arti-
cle.)

1. Randomly select f
τ

fraction of total phonons for which
is to be actually evaluated to train an ML-τ model.

2. Randomly select f
Γ

fraction of three-phonon phonon scattering
processes for each of the selected phonons from step (i) and
perform Γactual(λ, λ′, λ″) calculations for these selected scattering
processes.

3. Use evaluated Γactual(λ, λ′, λ″) from step-(ii) to predict/estimate
Γpredict(λ, λ′, λ″) of remaining 1 − f

Γ
scattering processes by either

training a ML model or using MLE estimator (ML-Γ).
4. Use Γpredict(λ, λ′, λ″) to obtain [using Eqn. (2)] of

selected phonon modes from step (i).
5. Train ML model (ML-τ) on to predict of

remaining 1 − f
τ
phonon modes.

The κpredict obtained from this combined approach using f
Γ

of 0.1 and
f
τ
of 0.05 are reported in Fig. 4(b). For Γpredict(λ, λ′, λ″), we employed the

MLE estimator based on the average linewidth of 10 % of the total
three-phonon scattering processes of a given phonon mode.

Noticeably, we find that the κ prediction accuracy is maintained
with this combined approach and the obtained MAPE on the considered
diverse dataset of 230 materials is 10 % by employing only f

Γ
f
τ
= 0.005

Fig. 3. The predicted κ of 230 diverse ternary materials using (a) 5 % and (b)
25 % of the symmetry-unrelated phonons in the ML training dataset. The pre-
diction mean absolute percentage error (MAPE) on predicted κ is 10 % with the
use of only 5 % phonon modes in the training dataset; indicating a computa-
tion speed-up of 20x in phonon scattering rate calculations with the ML ap-
proach.

fraction of the total three-phonon scattering calculations, thus, result-
ing in a computational speed-up of 200x as shown in Fig. 4(c), thereby
allowing for high-throughput discovery of materials. We note that the
employed random forest ML model adds only a few seconds to compu-
tational cost compared to several orders of magnitude reduction in cpu-
hours.

It is worth emphasizing that while data-driven approaches, focusing
on the direct end-to-end prediction of κ from atomic structures, are cur-
rently being explored for accelerated discovery of materials [22,23],
the accuracy of such approaches is limited to 55 % due to the non-
availability of a large amount of high-quality κ data [21]. In the absence
of such data, the κ calculation is currently possible through the BTE ap-
proach requiring interatomic force constants and phonon-phonon scat-
tering rates. This BTE-based approach is, however, computationally ex-
pensive and requires 10-104 cpu-hours for each material and calls for
method developments to accelerate such calculations.
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Fig. 4. (a) The calculation of phonon scattering rates from actual (left), ML-τ
(middle), and ML-(τ, Γ) (right) approaches. The filled and open circles repre-
sent actual calculations and ML-based predictions. (b) The predicted κ of 230
ternary materials using the combined ML-(τ, Γ) approach. (c) The computa-
tional time required for phonon scattering rates calculation with actual (filled
circles) and ML-(τ, Γ) (open circles) approaches. The computational times re-
ported in (a) are obtained by averaging over 230 ternary materials.

Various research efforts are underway to train ML forcefield on first-
principles data to accelerate the calculation of interatomic interactions
[24]. While these efforts are not particularly focused on κ prediction,
the developed forcefields are generic and are directly employable for
interatomic force constant evaluation without requiring any additional
effort. As such, with the possibility of availability of such high accuracy
forcefields, the phonon scattering rates evaluation will be the remain-
ing computational bottleneck for high-throughput BTE-based κ calcula-
tions. In this work, we have demonstrated that this computational bot-
tleneck in the phonon scattering rate calculations can be overcome with
ML-based approaches without compromising prediction accuracy.
When employed in conjunction with suitably accurate ML forcefields,
our approach will allow for the computation of κ of thousands of mate-
rials with first-principles accuracy.

In summary, we presented a machine-learning approach for acceler-
ating phonon scattering rate calculations for the thermal conductivity
prediction of materials. We tested our approach on more than 200 di-
verse materials and showed that the computational cost of phonon scat-
tering rate calculations can be reduced by more than two orders of mag-
nitude while preserving the thermal conductivity prediction accuracy
to 10 %. Our approach alleviates the computational bottleneck in
phonon scattering rate calculations and will pave the way forward for
high-throughput BTE-based computational discovery of materials.
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