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Atomic-position independent descriptor for machine learning of material properties
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The high-throughput screening of periodic inorganic solids using machine learning methods requires atomic
positions to encode structural and compositional details into appropriate material descriptors. These atomic
positions are not available a priori for new materials, which severely limits exploration of novel materials.
We overcome this limitation by using only crystallographic symmetry information in the structural description
of materials. We show that for materials with identical structural symmetry, machine learning is trivial, and
accuracies similar to that of density functional theory calculations can be achieved by using only atomic numbers
in the material description. For machine learning of formation energies of bulk crystalline solids, this simple
material descriptor is able to achieve prediction mean absolute errors of only 0.07 eV/at on a test dataset
consisting of more than 85 000 diverse materials. This atomic-position independent material descriptor presents
a new route of materials discovery wherein millions of materials can be screened by training a machine learning
model over a drastically reduced subspace of materials.
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I. INTRODUCTION

Machine learning (ML) methods are now able to predict
material properties with similar accuracy to those of density
functional theory (DFT) calculations but with several orders
of magnitude reduced computational cost [1–6]. ML methods
require a computational representation of materials that is
achieved by mapping structure and composition to descriptors
[7,8]. The majority of descriptors used in ML of inorganic
periodic solids, such as the extended Coulomb matrix [7]
and the partial radial distribution function [9], require atomic
positions. This explicit use of atomic coordinates depends
on prior knowledge of accurate positions for all atoms in a
material with limited applicability to new and/or unknown
materials (where atomic positions are not known a priori, as in
the case of high-throughput calculations). Recently, there have
been attempts to reduce this dependence of structure descrip-
tion on atomic coordinates, for instance, with a lattice vol-
ume independent Voronoi-tessellation (VT) -based descriptor
[10], volume-scaling-based normalized prototype structures
[11], and a perturbation-tolerant crystal graph (CG) -based
convolution neural network (CNN) [12], but a true atomic-
position independent (apI) descriptor capable of describing
structure details without explicit use of atomic positions is still
nonexistent.

Here, we present a crystallographic method for the apI
description of structural details for inorganic periodic solids.
Using this method, materials are clustered into different struc-
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ture types on the basis of symmetry. Within a given structure-
type cluster, only material composition is needed to accurately
describe the system. We first show that we can use an apI
descriptor effectively within a structure type, and we then
develop a universal apI descriptor (U-apI) that extends across
structure types.

For the prediction of material formation energies (FE)
relative to their standard elemental references, accuracies
similar to that of DFT calculations are achieved within these
structure-type clusters by using a representation learning feed-
forward neural network (RLFNN) employing only atomic
numbers of participating species. For FE predictions on the
20 most frequently appearing structure types from the open
quantum materials database (OQMD) [6], an attention-based
convolution neural network (ABCNN) employing a U-apI
descriptor is able to match apD descriptor-based ML models
by delivering a regularized performance with an average test
mean absolute error (MAE) of 0.07 eV/at.

The U-apI descriptor-based ABCNN is the first-ever apI
descriptor-based material ML model, which is capable of
learning across different structure types while matching the
performance of more involved apD descriptor-based ML
models. The U-apI descriptor-based ABCNN presents a new
paradigm of high-throughput material discovery where mil-
lions of compounds can be reliably screened using ML with-
out relying on atomic coordinates.

II. STRUCTURE TYPES

Three-dimensional periodic solids can be classified into
one of the 14 Bravais lattices [13]. These 14 Bravais lat-
tices, when combined with 32 point groups, result in 230
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three-dimensional space groups (without considering spin)
[14,15]. Each of these 230 space groups is divided into con-
jugate subgroups called Wyckoff sites [16]. Atoms in crystals
can sit only on special positions, called Wyckoff positions,
which are points belonging to the Wyckoff site of the space
group of the crystal [17]. For some Wyckoff sites, all internal
fractional coordinates are fixed; at the other sites, one or more
fractional coordinate can be changed while maintaining the
symmetry of the Wyckoff site.

The atomic structure of a periodic solid is uniquely iden-
tified by specifying (i) the crystal space group, (ii) chemical
species, (iii) Wyckoff sites occupied by atoms, (iv) the unit-
cell parameters, and (v) numerical values of the fractional
coordinates for occupied Wyckoff sites (needed for sites with
free fractional coordinates). Fixing the space group and Wyck-
off site of a material uniquely set the symmetry environment
of the atoms. Herein, this will be referred to as structure type.
Specifying the chemical species that occupy specific Wyckoff
sites results in a completely specified structure. Within this
fixed chemical and symmetry environment, the numerical val-
ues of the unit-cell parameters and free fractional coordinates
can be determined by performing DFT calculations or by
experimental synthesis and characterization of material.

For a given space group, many different Wyckoff site
combinations, referred to as Wyckoff sets here, result in
structurally identical compounds. For instance, for ABC3 sto-
ichiometry in space group 221, Wyckoff sets [(A, a), (B, b),
(C, c)] and [(A, b), (B, a), (C, d]) represent the same per-
ovskite structure type ([A, a) denotes specie A occupying
Wyckoff site a]. The former can be transformed to the latter by
a translation of ( 1

2 , 1
2 , 1

2 ). This poses a difficulty in the unique
representation of structures.

We overcome this difficulty by grouping all symmetrically
equivalent Wyckoff sets to each other. For a Wyckoff set W

consisting of N Wyckoff sites wi , i ∈ [1, N ] and Wyckoff
positions sij,α j ∈ [1, ni], where ni and α represent the mul-
tiplicity of Wyckoff site wi and lattice directions ( �a1, �a2, �a3),
we find a symmetric Wyckoff set W ′ such that (i) W ′ consists
of N Wyckoff sites, (ii) the multiplicities of Wyckoff sites in
set W ′ are the same as those of corresponding Wyckoff sites
in set W , i.e., ni = ni

′, for i ∈ [1, N], and (iii) ∃ �ti such that

f (R( �sij + �T ), �ti ) = �s ′
ij , (1)

where R and �T represent a rotation matrix and a translation
vector belonging to symmetry operations of a given lattice,
and f transforms free parameters (x, y, z) in Wyckoff site
positions �sij to (x − ti,x, y − ti,y, z − ti,z).

III. ML WITHIN STRUCTURE TYPE

We begin our apI-descriptor design with a simple
composition-only descriptor consisting of 15 elemental prop-
erties of participating species [18]. The ML is performed
using the random forest (RF) ML algorithm with 10 decision
trees as implemented in the ML library SKlearn [19] (predic-
tion MAE changes by less than 0.01 eV/at upon increasing
the number of decision trees from 10 to 100 in the random
forest). The ML is performed on 12 318 ABC3 stoichiometry
materials from the OQMD database for the prediction of

FIG. 1. Role of structural information in the ML of materials.
The predicted FEs of 12 318 ABC3 stoichiometry materials from
OQMD. In (a) and (b), materials are described using a simple
composition-only descriptor consisting of 15 elemental properties of
species A, B, and C by training the ML model over all structure types
simultaneously in (a) and separately in (b). In (c) and (d), predictions
are made using a VT-based apD descriptor [10] by training the ML
model over all structure types simultaneously in (c) and separately
in (d). The labels next to the data points in (b) show the structure
type (space group; Wyckoff sites). All predictions are made using a
random forest ML algorithm. Only test data are shown (20% of data).

FEs of materials for decomposition into elemental standard
states [10]. The materials are randomly assigned into training
and test datasets consisting of 80% and 20% of the total
materials, respectively. Figure 1 reports the predicted FEs
of the materials in the test dataset materials. A MAE of
0.41 eV/at is achieved by using a simple composition-only
descriptor; see Fig. 1(a). The large MAE is due to the presence
of five different ABC3 allotropes in the dataset, indistin-
guishable by elemental properties alone. To distinguish these
allotropes, materials are preclustered on the basis of structure
type before performing ML [Fig. 1(b)] reducing the average
MAE to 0.14 eV/at. This threefold reduction in the MAE
with structure-type clustering demonstrates the importance
of retaining structural details. This is in contrast with [20],
where the authors suggested a similar ML performance from
structure-dependent and structure-independent descriptors for
vibrational free energy and entropy predictions.

In Fig. 1(c), the VT-based apD descriptor [10] is used
for the material description, and the prediction MAE is
0.04 eV/at. In comparison to the structure-type preclustering-
based apI descriptor in Fig. 1(b), the superior performance
of the VT-based apD descriptor in Fig. 1(c) can originate
from (i) simultaneous training over all structure types, (ii)
additional apD details about fractional volumes of atoms,
and (iii) inclusion of 271 elemental/structural properties of

214112-2



ATOMIC-POSITION INDEPENDENT DESCRIPTOR FOR … PHYSICAL REVIEW B 98, 214112 (2018)

FIG. 2. ML for the same structure-type materials. (a) A
representation-learning feedforward neural network employing
atomic numbers of participating species for FE prediction of per-
ovskite structure-type materials. (b) The effect of training set size
on the prediction performance of the neural network. The network
takes atomic numbers of species A, B, and C as input and learns
their five-dimensional representation from the training data.

species [as opposed to 15 per species in Fig. 1(b)]. The effects
of (i)–(iii) are investigated independently in the following
paragraphs.

The effect of (i) is tested by separately training the VT-
based apD descriptor ML model on the different structure
types [Fig. 1(d)]. The average MAE increases only marginally
to 0.06 eV/atom. The minimum MAE across different struc-
ture types is 0.06 eV/atom in Fig. 1(d) compared to an average
MAE of 0.04 eV/at in Fig. 1(c) showing that all structure
types gained accuracy improvements by simultaneous training
of the ML model in Fig. 1(c).

The effect of including additional structural details [(ii)
from above] was studied by focusing on the perovskite struc-
ture type with space group 221 and Wyckoff sites a, b, and
c [blue data points in Figs. 1(b) and 1(d)]. For the perovskite
structure type, the only free parameter is the lattice constant,
i.e., atom connectivity and interatomic distances are uniquely
identified upon specifying the lattice constant. Therefore,
the use of fractional atomic volume (and fractional-volume
weighted elemental properties) in the VT-based apD descrip-
tor does not provide additional structural information beyond
that already encoded in the Wyckoff sites. The prediction
MAE with a structure-type preclustering-based apI descriptor
of 0.12 eV/at in Fig. 1(b) compared to only 0.06 eV/at
in Fig. 1(d) rules out the additional contribution from apD
structure details as the source of the superior performance of
a VT-based apD descriptor.

To confirm that the inferior performance of the structure-
type preclustering-based apI descriptor in Fig. 1(b) originates
from nonoptimized elemental properties of relevant species
[factor (iii) from above], a RLFNN is employed for the ML
of FEs of materials belonging to perovskite structure type
in Fig. 2. Instead of using pretabulated elemental proper-
ties, the RLFNN was designed to learn a five-dimensional
representation of species from the training data itself. The
RLFNN architecture is reported in Fig. 2(a), where learnable
representations of species A, B, and C are passed through two
fully connected hidden layers consisting of 10 and 4 neutrons
to make the FE prediction. With this network design and
for 82 chemical species in the perovskite structure type from

OQMD, the number of trainable weights is only 645, of which
410 are for elemental representations.

In Fig. 2(b), the effect of training dataset size on pre-
dictability is presented by training the network on varying
sized datasets and evaluating the performance on ∼1100
test data points. For fewer than 1500 points in the training
dataset, the network results in overfitting indicated by large
differences in the MAEs between training and testing datasets
(regularization is not used in this network). With more than
2500 points in the training dataset, the network is able to
achieve a prediction MAE of less than 0.06 eV/at, the same as
that from the VT apD descriptor-based RF model in Fig. 1(d).

Figure 3 reports the performance of the structure-type
preclustering apI descriptor-based RLFNN compared to the
VT apD descriptor-based RF model for the 20 most frequently
appearing structure types in OQMD in Fig. 3. These structure
types consist of more than 380 000 materials from 13 space
groups involving 41 different Wyckoff sites and 84 elements.
For the RLFNN, a different neural network [similar to that in
Fig. 2(a)] is trained on a different structure type. For the VT
apD descriptor-based RF model, a single RF was trained by
randomly collecting 80% of the data from each structure type.

For structure types consisting of more than 3500 materials,
RLFNN results in MAEs of less than 0.12 eV/at. For structure
types with fewer materials, the MAEs from RLFNN increase
up to a maximum of 0.25 eV/at. In comparison, the VT
apD descriptor-based RF model delivers a more regularized
performance with maximum MAEs of only 0.10 eV/at across
all considered structure types.

The RLFNN of Fig. 2(a) is designed to learn the elemental
representations of species from the training dataset. As shown
in Fig. 2(b), depending on the structure type, this requires
an excess of 2500–3500 training data points. For densely
populated structure types, while this trivial composition-only
descriptor simplifies the material description and learning, for
sparsely populated structure types, the prediction performance
can be improved by sharing elemental information across
structure types. To achieve this, we next focus our attention
on the U-apI descriptor, which is capable of learning across
different structure types.

IV. ML ACROSS STRUCTURE TYPES

As presented in Figs. 1(a) and 1(b), space group and
Wyckoff sites are needed in the material description (along
with the material composition) for learning across different
structure types. While both space group and Wyckoff sites can
be represented using simple scalars in the material description,
this would suggest, for instance, that space groups 10 and
220 can be combined to form space group 230. To avoid
this misrepresentation, space groups in the U-apI descrip-
tor are represented by a one-hot vector of length 230. The
occupied Wyckoff sites and corresponding atomic species
are represented by a matrix of size 27 × 118 (referred to
as a Wyckoff-species matrix in this work), where 27 is the
maximum number of Wyckoff sites in any space group [21]
and 118 is the number of elements from the Periodic Table.
The element (i, j ) of the Wyckoff-species matrix denotes the
number of Wyckoff sites of type i occupied by an element
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FIG. 3. ML across structure types. Comparison of atomic-position dependent and atomic-position independent descriptor-based ML
models for the prediction of FE of the 20 most frequently appearing structure types from OQMD. For atomic-position dependent descriptors,
VT apD descriptor-based RF [10] and CG-based CNN [12] are considered. For atomic-position independent descriptors, structure-type
preclustering-based RLFNN and U-apI descriptor-based ABCNN are considered. The x-axis labels represent the material’s stoichiometry,
space-group number, and Wyckoff sites. For structure-type preclustering-based RLFNN, a different ML model is trained on each structure type.

of atomic number j . The U-apI descriptor for CaTiO3 in the
perovskite structure type is illustrated in Fig. 4(a).

The simple concatenation of the space group vector
and Wyckoff-species matrix results in a tensor of size
230 × 27 × 118. Training using simple ML models, such

FIG. 4. U-apI descriptor and attention-based convolution neural
network. (a) Illustration of U-apI descriptor (consisting of space
group vector and Wyckoff-species matrix) for CaTiO3 in the per-
ovskite structure type. Only nonzero entries are explicitly listed for
simplicity. (b) An attention-based convolution neural network for
the prediction of material properties using the U-apI descriptor. The
shared, attention, and fully connected layers are represented by blue,
red, and brown. F1, F2, and F3 represent (W1, b1), (W2, b2), and
(W3, b3), respectively. The total number of trainable weights in the
network are 11 197, which are obtained by setting the values of
NF1, NF2, NW , NE , NSG, Nh1, and Nh2 at 4, 4, 4, 8, 4, 60, and 10,
respectively.

as linear regression and a feedforward neural network, on
this gigantic tensor produces a minimum of 732 780 fitting
parameters, which is more than the number of entries in
modern high-throughput material databases, thereby poten-
tially causing overfitting. To avoid this, the U-apI descriptor
is used with weight-sharing ABCNN [22] as presented in
Fig. 4(b). In this neural network, the columns of the Wyckoff-
species matrix are passed through three weight-sharing layers
followed by multiplication with species attention weights
to get an embedded representation of the Wyckoff-species
matrix. This embedded representation is next weighted by
space group attention weights before finally passing through
two consecutive fully connected hidden layers to make a
prediction for the material property.

Mathematically, the input Wyckoff-species matrix, Wi,j , is
passed through two convolution layers consisting of NF1 and
NF2 filters followed by a weight-sharing layer to obtain a NW

length embedded representation of columns of the Wyckoff-
species matrix as

h1k
i,j = f

(
C1k

i × Wi,j

)
, (2)

h2l
i,j = f

(∑
k

C2k,l
i × h1k

i,j

)
, (3)

h3m,j = f

(∑
i,l

C3m
i,l × h2l

i,j

)
, (4)

where k, l, and m loop from 1 to NF1, NF2, and NW ,
f () is the activation function introducing nonlinearity in
the network, and C1, C2, and C3 are trainable convolution
filter weights. The obtained embedded representation of the
Wyckoff-species matrix is next weighted by elements and
space group attention weights to obtain the hidden material
representation h6m,n,q as

h4m,n =
∑

j

A1j,n × h3m,j , (5)

h5q =
∑

p

A2p,q × Sp, (6)

h6m,n,q = h4m,n × h5q, (7)
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TABLE I. The effect of different hyperparameters on the training error of U-apI descriptor based ABCNN.

Number of Training error
NF1 NF2 NW NE NSG Nh1 Nh2 trainable parameters Activation function (eV/at)

4 4 4 4 4 20 10 3885 Sigmoid 0.10
8 4 4 4 4 20 10 4425 Sigmoid 0.11
4 8 4 4 4 20 10 4749 Sigmoid 0.12
4 4 8 4 4 20 10 5597 Sigmoid 0.11
4 4 4 8 4 20 10 5637 Sigmoid 0.08
4 4 4 12 4 20 10 7389 Sigmoid 0.08
4 4 4 4 8 20 10 6085 Sigmoid 0.11
4 4 4 4 4 40 10 5385 Sigmoid 0.08
4 4 4 4 4 60 10 6885 Sigmoid 0.09
4 4 4 4 4 80 10 8385 Sigmoid 0.09
4 4 4 4 4 20 20 4105 Sigmoid 0.11
4 4 4 4 4 20 10 3885 Elu 0.11
4 4 4 4 4 20 10 3885 Softplus 0.12
4 4 4 4 4 20 10 3885 Softsign 0.10
4 4 4 4 4 20 10 3885 Tanh 0.10

where Sp is the input space group vector of length 230, A1
and A2 are trainable elemental and space group attention
weights, and n and q loop from 1 to NE and NSG. The hidden
material representation h6m,n,q is finally passed through two
fully connected layers of Nh1 and Nh2 neurons to obtain the
prediction for the material property as

h7r = f

(
b1r +

∑
m,n,q

W1r
m,n,q × h6m,n,q

)
, (8)

h8s = f

(
b2s +

∑
r

W2r,s × h7r

)
, (9)

FE = b3 +
∑

s

W3s × h8s , (10)

where (W1, b1), (W2, b2), and (W3, b3) are trainable fully
connected layer weights and r and s vary from 1 to Nh1 and
Nh2.

The neural network is implemented using the openly avail-
able tensor library Tensorflow [23]. The trainable weights are
all initialized using a truncated Normal distribution of zero
mean and unity standard deviation. The training is performed
using the Adam optimizer [24] with an initial learning rate
of 1 × 10−3. The training is performed for 10 000 epochs
with a batch size of 1024. The MAE is used as the loss
function for the training of the network. For training on
the top 20 most frequently appearing structure types from
OQMD, the loss on individual materials is scaled inversely
by the number of materials in the structure type. The values
of the hyperparameters NF1, NF2 NW , NE , NSG, Nh1, Nh2,
and the activation function are tested on the training error, and
the results are summarized in Table I.

The final network has a total of 11 197 trainable weights
that are obtained by setting the values of NF1, NF2, NW , NE ,
NSG, Nh1, and Nh2 at 4, 4, 4, 8, 4, 60, and 10, respectively.
The sigmoid function is used to introduce nonlinearity in the
network. The python code for generating the U-apI descriptor
from structure files and for performing ML using U-apI
descriptor-based ABCNN can be obtained through GITHUB

[25].

The prediction performance of U-apI descriptor-based
ABCNN is reported in Fig. 3 for the 20 most frequently ap-
pearing structure types from the OQMD. The reported MAEs
in Fig. 3 are on test datasets that are obtained by randomly
assigning total materials from each structure type into training
and test datasets consisting of 80% and 20% of the total
materials, respectively. For these structure types, the VT apD
descriptor-based RF and the structure-type preclustering apI
descriptor-based RLFNN result in maximum MAEs of 0.10
and 0.25 eV/at and a factor of 5 difference in the performance
on sparsely and densely populated structure types. For the U-
apI descriptor-based ABCNN, with an exception of structure-
type (ABC3; 99; a,b,ac), the maximum MAE is 0.10 eV/at
with only a factor of 2 difference in the performance across
structure types.

As can be seen in Fig. 1(b), for structure-type (ABC3; 99;
a,b,ac), several materials have FE as high as 5 eV/at. These
materials have compositions HfTlO3, TmTlO3, LuTlO3,
SmTlO3, HoTlO3, and OsTlO3. All of these materials are er-
roneously reported to have identical lattice constants of 3.398
and 3.639AA in the a and c directions in the relaxed config-
urations in the OQMD, thereby suggesting failed/nonrelaxed
geometries. For these materials, the prediction errors are as
high as 6 eV/at. Removing these erroneous entries from the
dataset brings down the MAE to below 0.10 eV/at for (ABC3;
99; a,b,ac) structure-type using the U-apI descriptor-based
ABCNN (not shown in Fig. 3).

The ability of the U-apI descriptor-based ABCNN to
handle structurally diverse materials is tested by performing
the learning on more than 428 000 materials from OQMD.
These materials belong to 90 different space groups with 289
participating Wyckoff sites and 84 elements and are obtained
by eliminating materials for which participating Wyckoff sites
appeared in fewer than 100 materials in the OQMD [26]. On
these materials, the U-apI descriptor-based ABCNN results in
a test MAE of only 0.07 eV/at.

The CNN has also been employed recently by Xie et al.
[12] with a CG descriptor to predict the material properties of
inorganic periodic solids. When used in the prediction of FE
of materials from the OQMD [27], this CG-based CNN results
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FIG. 5. ML on unseen structure types. The variation of test
MAEs with the training set size for perovskite structure-type materi-
als. For models trained on all data, all materials from Fig. 3 (except
those belonging to the perovskite structure type) are used in training.
For materials belonging to the perovskite structure type, the total
materials are randomly split into train and test datasets consisting
of 80% and 20% of the total materials. The varying number of
materials from the 80% set are added in the training dataset, and the
prediction performances are evaluated on a test dataset consisting of
only perovskite structure-type materials.

in a similar prediction performance to that of the VT apD
descriptor-based RF (Fig. 3). The CG-based CNN, however,
employs additional structural information about relaxed bond
lengths of neighboring atoms, which, similar to VT, requires
relaxation of atomic coordinates and therefore inhibits predic-
tion for new materials. In contrast, the U-apI descriptor-based
ABCNN employs only space group and Wyckoff sites of
atoms and therefore allows for screening of millions of com-
positionally different new materials within the same structure
type.

The prediction performance of a
U-apI descriptor-based ABCNN on new, unseen structure
types is presented in Fig. 5. For this, all materials other
than those belonging to the perovskite structure type from
Fig. 3 are used in the training. For materials belonging to
the perovskite structure type, 20% of the total materials
are randomly picked and are used to evaluate the model
performance. From the remaining 80% of the materials with
perovskite structure type, a varying number of materials
are added in the training set, and the dependence of model
performance on training set size is evaluated.

Without any perovskite structure-type material in the train-
ing dataset, the test MAE from the U-apI descriptor-based
ABCNN is 0.55 eV/at. With an inclusion of 500 perovskite
structure-type materials in training, the test MAE drops to less
than 0.09 eV/at. This is more than a factor of 4 improvement
in the prediction performance compared to that from RLFNN
(trained only on materials from the perovskite structure type)
for which the test MAE is 0.35 eV/at for 500 materials in the
training dataset and the test MAE drops to less than 0.10 eV/at
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FIG. 6. Physical significance of attention weights. The heatmap
shows the similarity of elements to form chemical compounds. The
similarities between elements are characterized using the Euclidean
distance of elemental attention weights learned by the neural net-
work. The nonparticipating elements are represented using black.

when 1300 materials are included in the training dataset.
This demonstrates that the representation weights learned by
ABCNN are applicable over different structure types.

When trained on only perovskite structure-type materials,
the prediction performance of the VT apD descriptor-based
RF model is inferior to that from U-apI descriptor-based
ABCNN, and the test MAE reduces to 0.09 eV/at only when
1000 materials are included in the training dataset. On training
the VT apD descriptor-based RF on all materials, however, the
test MAE is 0.08 eV/at even when no perovskite structure-
type materials are included in the training dataset.

The physical significance of attention weights of elements
in the U-apI descriptor-based ABCNN is tested by identifying
the similarities of elements to form chemical compounds. For
this, the Euclidean distance is evaluated between elemental
representation attention weights (A1 in Fig. 4) as learned by
the ABCNN. The resulting heatmap of distances is presented
in Fig. 6. As can be seen from Fig. 6, the ABCNN learned cor-
rect elemental trends include (i) chemical similarities of the
same group elements of the Periodic Table to form chemical
compounds, (ii) correctly identifying 8, 8, 18, and 18 elements
(corresponding to the number of elements in the Periodic
Table periods 2, 3, 4, and 5) after which chemical bonding
properties are similar, and (iii) chemical similarities between
lanthanides except for elements Eu and Yb, which have half-
and full-filled f -orbitals, respectively. We note that these
properties are learned solely using the material’s formation
energies. We further note that this heatmap is similar to that
obtained by Glawe et al. [28] using the statistical analysis
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of experimentally known materials, thereby establishing the
physical relevance of attention weights in the ABCNN.

In summary, we used a crystallographic space group and
Wyckoff sites to describe the structure details of materials in
ML models. We find that space group and Wyckoff sites fix
the symmetry environment of materials where composition-
only material descriptors are sufficient to distinguish different
materials. We show that with sufficient materials in this fixed
space group and Wyckoff-site space and with a representation
learning feedforward neural network, the minimal material
descriptor employing only atomic numbers is able to match
the performance of the apD descriptor. Lastly, we present
a U-apI descriptor that, when used with an attention-weight
sharing convolution neural network, is able to learn across

diverse structure types and delivers a prediction MAE of
0.07 eV/at. This accurate and regularized performance of a U-
apI descriptor across diverse structure types without explicit
use of atomic positions (as in the case of other material
descriptors) establishes the broader applicability of the U-apI
descriptor in the ML of material properties.

ACKNOWLEDGMENTS

We thank Raul Abram Flores, Jr. and Christopher
Paolucci from Stanford University for their valuable feedback.
We acknowledge financial support from the Toyota Research
Institute.

[1] Q.-J. Hong and A. van de Walle, J. Chem. Phys. 139, 094114
(2013).

[2] K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara, I. Kishida, K.
Shitara, C. A. Fisher, H. Moriwake, and I. Tanaka, Adv. Energy
Mater. 3, 980 (2013).
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