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Single-channel or multichannel thermal transport: Effect of higher-order anharmonic
corrections on the predicted phonon thermal transport properties of semiconductors
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The phonon thermal transport properties of eight ternary intermetallic semiconductors are investigated by
accounting for higher-order four-phonon scattering, phonon renormalization, and multichannel thermal transport.
The commonly used lowest-order theory, which accounts only for three-phonon scattering and without phonon
renormalization, fails drastically for the considered materials and underpredicts the thermal conductivity by up to
a factor of two. The thermal conductivity decreases for three compounds and increases for five compounds with
the application of higher-order corrections owing to a contrasting role of four-phonon scattering and phonon
stiffening on the predicted thermal conductivity. Using the higher-order theory, at a temperature of 300 K,
the lowest obtained thermal conductivity is 0.31 W/m K for BiCsK2 and three other compounds (SbCsK2,
SbRbNa2, and SbRbK2) have thermal conductivities lower than 0.5 W/m K via the particlelike phonon transport
channel. The contribution from the wavelike coherent transport channel is lower than 0.05 W/m K in all of
these ultralow thermal conductivity compounds. The higher-order theory is crucial for the correct description of
thermal transport physics, failing which the thermal transport is wrongly characterized as multichannel transport
by the lowest-order theory.
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I. INTRODUCTION

With advances in computational resources in the past
decade, it is now possible to predict the phonon thermal con-
ductivity of semiconducting crystalline materials by solving
the Boltzmann transport equation (BTE) with inputs from
ab initio calculations [1–4]. The BTE theory accounts only
for three-phonon interactions at the lowest order [4–6]. While
this lowest-order theory is found to work well for relatively
simple materials and an excellent agreement with experiments
is obtained wherever possible [3,6,7], recently, this theory has
been reported to fail severely for several low and high ther-
mal conductivity compounds (such as BAs [8], Tl3VSe4 [9],
MoS2 [10]). In particular, it is shown that (a) phonon scatter-
ing due to higher-order four-phonon processes and (b) phonon
renormalization due to quartic anharmonicity are significant
in these technologically relevant materials not accounted for
in the lowest-order theory [11–14]. For binary compounds
with a zinc-blende crystal structure, applying the first of these
corrections resulted in an up to 75% reduction in thermal con-
ductivity at room temperature [14]. For Tl3VSe4, on the other
hand, these higher-order corrections resulted in more than
a factor of two increase in the thermal conductivity [9,13].
In comparison to the lowest-order theory, the higher-order
corrections are three to four orders of magnitude expensive to
compute and their application is currently limited to a handful
of materials [9,11–14].

In parallel, the failure of the lowest-order transport theory
to describe the experimentally measured thermal transport in
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ultralow thermal conductivity solids has also motivated the
development of several heuristics-based multichannel thermal
transport models where on top of the particlelike phonon
transport channel, an additional contribution arising from
diffusionlike heat transfer channel is taken into account to
explain the underprediction of experimentally measured val-
ues [15,16]. These developments subsequently evolved into
a derivation of unified thermal transport theory capable of
describing the thermal transport in the spectrum of materi-
als varying from purely amorphous to perfectly crystalline
solids [17]. The major finding of this unified thermal transport
theory is the contribution from both particlelike (originat-
ing from well-defined phonon modes) and wavelike (from
tunneling/coherence between modes) transport channels to-
wards the thermal transport. In practical implementations,
the unified/multichannel thermal transport theory requires
phonon mode properties (frequency, linewidth, etc.) which
can be obtained by either using only the lowest-order the-
ory or by also including the higher-order corrections. Since
higher-order corrections are computationally demanding, the
application of multichannel thermal transport in the liter-
ature is extremely limited to lowest-order theory driven
phonon properties and its validity/significance is debated
when higher-order corrections are taken into account [13].

In this regard, the phonon thermal transport of eight
ternary semiconducting compounds with stoichiometry ABC2

[A ∈ (Sb, Bi), B ∈ (Na, K, Rb, Cs), and C ∈ (Li, Na, K)] is
investigated in this paper by employing the higher-order
corrections and unified thermal transport theory. At a temper-
ature of 300 K, the thermal conductivity of these compounds
varies between 0.16 and 6.1 W/m K using the lowest-order
theory. The combined effect of four-phonon scattering and
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phonon renormalization resulted in a decrease in thermal
conductivity for three of the considered compounds and an in-
crease in thermal conductivity for five considered compounds.
The maximum change in thermal conductivity is for SbRbK2,
for which the thermal conductivity increases by more than a
factor of two (from 0.16 to 0.37 W/m K) with the inclusion
of these corrections. The particlelike single-channel phonon
transport picture is erroneously invalid at the lowest order of
theory and the application of higher-order corrections results
in a single-channel thermal transport with a coherent channel
contribution of less than 13% in all of the considered com-
pounds.

II. METHODOLOGY

The contribution of a particlelike phonon transport channel
towards the thermal transport in the α direction is obtained
by solving the Boltzmann transport equation and the Fourier’s
law, as [18,19]

kp
α =

∑
λ

cλv
2
λ,ατλ,α, (1)

where kp
α represents the thermal conductivity, the summation

is over all the phonon wave vectors q and polarizations ν

enumerated by a composite index λ = (q, ν), cλ is the phonon
specific heat, vλ,α is the α component of the phonon group
velocity vector vλ, and τλ,α is the phonon scattering time.
The phonon specific heat is obtained from the phonon vibra-
tional frequencies as cλ = h̄ωλ

V
∂no

λ

∂T , where no
λ, h̄, ωλ, V , and

T are the Bose-Einstein distribution, reduced Planck con-
stant, phonon frequency, crystal volume, and temperature. The
phonon group velocities can be obtained as vλ = ∂ωλ

∂q and
the phonon frequencies are obtained from the diagonalization
of the dynamical matrix as ω2

λeλ = Dq · eλ, where eλ is the
eigenvector and Dq is the dynamical matrix whose elements

D3(b−1)+α,3(b′−1)+β
q are given by

D3(b−1)+α,3(b′−1)+β
q =

∑
l ′

	
αβ

b0;b′l ′√
mbmb′

ei[q·(rb′ l′−rb0 )], (2)

with the summation running over all unit cells in the lattice
(N), and mb, rbl being the mass and position vector of atom b
in the lth unit cell, and 	

αβ
i j is the real-space (i j, αβ ) element

of the harmonic force constant matrix �.
At the lowest level of theory, the � used in Eq. (2) is a bare-

harmonic force constant (as obtained from finite-difference
or density functional perturbation theory and without renor-
malization). The phonon-phonon scattering rates at the lowest
order of theory are limited to three-phonon processes and are
obtained as [9,18,20,21]

1

τ
3ph
λ

=
∑
λ1,λ2

{(
nλ1 − nλ2

)
W + + 1

2

(
nλ1 + nλ2 + 1

)
W −

}
, (3)

where W represents the scattering probability matrix given by

W ± = 2π

h̄2 |�λ(±λ1 )(−λ2 )|2δ
(
ωλ ± ωλ1 − ωλ2

)
, (4)

±λ = (±q, ν), and �λ(λ1 )(λ2 ) are the Fourier transforms of
real-space cubic constants �

αβγ

bl;b′l ′;b′′l ′′ , and are obtained as

�λλ1λ2 = �νν ′ν ′′
qq′q′′ = N

(
h̄

2N

) 3
2 ∑

b

∑
b′l ′

∑
b′′l ′′

∑
αβγ

�
αβγ

bl;b′l ′;b′′l ′′
ẽα

bλẽβ

b′λ′ ẽ
γ

b′′λ′′√
mbωλmb′ωλ′mb′′ωλ′′

e[i(q′ ·r0l′ +q′′ ·r0l′′ )]. (5)

The δ in Eq. (5) represents the delta function ensuring energy conservation and the summation is performed over phonon wave
vectors satisfying crystal momentum conservation, i.e., q + q1 + q2 = G, where G is the reciprocal space lattice vector.

At the higher order of theory, the phonon-phonon scattering rates are obtained by considering both three-phonon and four-
phonon processes. The scattering rates of phonons due to second order, i.e., four-phonon processes, are obtained as [9,11,18,22]

1

τ
4ph
λ

=
∑

λ1,λ2,λ3

{
1

6

{
nλ1 nλ2 nλ3

nλ

W −−
}

+ 1

2

{(
nλ1 + 1

)
nλ2 nλ3

nλ

W +−
}

+ 1

2

{(
nλ1 + 1

)(
nλ2 + 1

)
nλ3

nλ

W ++
}}

, (6)

where W ±± represents the scattering probability matrix given by

W ±± = 2π

h̄2 |�λ(±λ1 )(±λ2 )(−λ2 )|2δ
(
ωλ ± ωλ1 ± ωλ2 − ωλ3

)
, (7)

and �λ(λ1 )(λ2 )(λ2 ) are the Fourier transforms of the quartic force constants �
αβγ δ

i jkl , and are obtained as

�λλ1λ2λ2 = �νν ′ν ′′ν ′′′
qq′q′′q′′′ = N

(
h̄

2N

)2 ∑
bb′b′′b′′′

∑
l ′l ′′l ′′′

∑
αβγ δ

�
αβγ δ

bl;b′l ′;b′′l ′′;b′′′l ′′′
ẽα

bλẽβ

b′λ′ ẽ
γ

b′′λ′′ ẽδ
b′′′λ′′′√

mbωλmb′ωλ′mb′′ωλ′′mb′′′ωλ′′′
e[i(q′ ·r0l′+q′′ ·r0l′′+q′′′ ·r0l′′′ )]. (8)

Similar to Eqs. (4) and (5), the summations in Eq. (8) are performed over phonon wave vectors satisfying crystal momentum
conservation and δ ensures energy conservation during the four-phonon scattering event.

Further, at the higher order of theory, the phonon frequencies and eigenvectors are obtained from Eq. (2) using the
renormalized harmonic force constants 	

c,αβ
i j , which are obtained as [11,20]

	
c,αβ
i j = 	

o,αβ
i j + h̄

4N

∑
l ′′′l ′′′′

∑
b′′′b′′′′

∑
γ δ

∑
qν

�
αβγ δ

i jkl

ẽγ

b′′′λẽ†δ
b′′′′λ

ωλ

√
mb′′′mb′′′′

(2nλ + 1)eiq·(r0l′′′ −r0l′′′′ ), (9)

where 	
o,αβ
i j represent the raw harmonic force constants (as obtained from ab initio calculations).
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FIG. 1. The thermal conductivity of considered compounds at
300 K as obtained by considering (a) lowest-order theory k3, and
(b) higher-order four-phonon scattering and quartic renormalization
corrections k34,renorm. The relative importance of (c) four-phonon
scattering k34/k3 and (d) quartic renormalization k3,renorm/k3 on the
predicted thermal conductivity. The materials for which thermal con-
ductivity increases (decreases) with higher-order theory are colored
green (red).

Finally, to account for multichannel thermal transport, the
contribution of the coherent channel kc

α can be obtained using
the off-diagonal terms of the velocity operator as [17]

kc
α = h̄2

kBT 2

1

V N

∑
q

∑
(ν �=ν1 )

ωqν + ωqν1

2
V α

q,νν1
V α

q,ν1ν

× ωqνnqν (nqν + 1) + ωqν1 nqν1

(
nqν1 + 1

)
4
(
ωqν − ωqν1

)2 + (
�qν + �qν1

)2

(
�qν + �qν1

)
,

(10)

where �qν is the phonon linewidth (�qν = 1/τqν) and V α
q,νν1

is
the α component of the velocity operator and can be obtained
as

V q,νν1 = 1

2
√

ωqνωqν1

〈eqν | ∂Dq

∂q

∣∣eqν1

〉
, (11)

using the Wallace/smooth representation of the dynamical
matrix [Eq. (2)] [23]. Further details on these methods are
available in Refs. [9,21,24–26]. The computational details
and the convergence of predicted results with the choice of
numerical parameters are reported in Secs. S1–S3 in the Sup-
plemental Material (SM) [27].

III. RESULTS

By considering only the particlelike transport channel, at a
temperature of 300 K, the thermal conductivities of the con-
sidered compounds vary between 0.16 and 6.08 W/m K using
the lowest-order theory as reported in Fig. 1(a). On inclusion
of higher-order corrections in Fig. 1(b), the thermal conduc-
tivity decreases for three compounds and increases for five

FIG. 2. The representative phonon dispersion of materials with
(a) frequency band gaps and (b) weakly bonded atoms. The gray
solid and black dashed lines represent nonrenormalized and renor-
malized (at 300 K) results. The markers are colored according to the
inverse participation ratio of modes which varies between 0 and 1 for
localized and delocalized modes.

compounds. The maximum decrease (increase) is for SbNaLi2
(SbRbK2), for which thermal conductivity decreases by 27%
(increases by more than a factor of two) with the inclusion
of higher-order corrections. To understand the origin of this
puzzling role of higher-order corrections on the predicted
thermal conductivity, the effects of four-phonon scattering and
phonon renormalization are considered separately.

Compared to the lowest-order theory, the inclusion of
four-phonon scattering processes decreases the thermal con-
ductivity for all considered compounds due to an additional
phonon scattering channel. The extent to which the phonon
thermal conductivity is affected depends on two factors: (i)
how much was three-phonon scattering to start with and (ii)
how strong is four-phonon scattering. The extent of three-
phonon scattering, in turn, is dependent on the number of
three-phonon processes which are able to satisfy the scattering
selection rules and the strength of each of these scattering
processes. The number of three-phonon processes which can
satisfy the crystal momentum and energy conservation selec-
tion rules can be obtained from the phonon spectrum and
are characterizable using the three-phonon scattering phase
space (see Fig. 2). For instance, among the two representative
phonon spectra presented in Fig. 2, the presence of frequency
gaps in the spectrum of SbNaLi2 makes it difficult to satisfy
the energy conservation selection rule (see details in Sec. S3)
and results in the reduction of three-phonon scattering phase
space (to almost zero) for several mid- and high-frequency
optical phonons. This nonscattering of optical phonons
via three-phonon processes gets reflected in their high
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FIG. 3. The phonon scattering lifetimes obtained by considering
only three-phonon scattering and by considering both three- and
four-phonon scattering for (a) SbNaLi2 and (b) SbRbK2. The thermal
conductivity enhancement of considered compounds with phonon
renormalization plotted against (c) thermal MSD and (d) effective
bond stiffness. The reported MSDs (bond stiffness) in (c) [(d)] are the
maximum (minimum) of all atoms in a considered compound. Note
that the phonon scattering lifetimes are obtained without considering
phonon renormalization in (a) and (b). The scattering lifetimes ob-
tained by including phonon renormalization are reported in Fig. S5
for SbRbK2.

contribution to thermal transport at the lowest order of theory.
With the inclusion of higher-order four-phonon scattering,
these otherwise unscattered phonons are able to undergo scat-
tering which results in their reduced contribution to thermal
transport [28]. In the particular case of SbNaLi2 at 300 K, the
contribution of mid-frequency optical phonons (2–4 THz) is
reduced from 4.3 to 2.4 W/m K with the inclusion of four-
phonon scattering [Fig. 3(a)], which corresponds to a 34%
reduction in the total predicted thermal conductivity.

The strength of the individual three-phonon and four-
phonon scattering processes depends on the anharmonicity
experienced by the atoms. For materials with strongly bonded
atoms, the atoms move very little around their equilibrium
positions and are limited to the harmonic part of the potential
energy surface. In contrast, for materials with weakly bonded
atoms, the atoms are able to move far away from their equi-
librium positions and experience the more anharmonic part of
the potential energy surface. In such materials, the effect of
four-phonon scattering is strongest on modes dominated by
loosely bound atoms (which happen to be the heat-carrying
acoustic modes). For instance, in SbRbK2, the acoustic modes
are dominated by weakly bonded Rb atoms [29] and have
frequencies up to 1.5 THz. In contrast, for SbNaLi2, the cor-
responding modes have a contribution from strongly bonded
Sb atoms and have frequencies up to 2.5 THz. As a result,
while the contribution of sub-THz modes reduces by 29%
with the inclusion of four-phonon scattering in SbRbK2, the

FIG. 4. The change in thermal conductivity of considered com-
pounds with higher-order corrections as summarized using bond
stiffness and scattering phase space. The materials for which thermal
conductivity decreases (increases) with higher-order corrections are
highlighted using red (green) circles. The size of the circles is pro-
portional to the fractional change in thermal conductivity ad black
circles represent no change in thermal conductivity.

corresponding reduction is less than 8% for modes with fre-
quencies up to 2 THz in SbNaLi2 [Fig. 3(b)].

With phonon renormalization, the heat-carrying acoustic
phonons become stiff in all considered materials, resulting in
an increase in the predicted thermal conductivity [Fig. 1(d)].
The extent of renormalization is proportional to (a) the ther-
mal mean square displacement (MSD) of atoms and (b)
the strength of the quartic force constant [Eq. (9)]. The
strength of the quartic force constants or anharmonicity is,
in general, dependent on atomic displacements around their
equilibrium positions (not true for perfectly harmonic ideal
crystals). As such, the enhancement in thermal conductivity
with renormalization is expected to have a strong dependence
on thermal MSD. This is reported in Fig. 3(d) where a linear
dependence is obtained between the thermal conductivity en-
hancement and MSDs. Since large MSDs are a manifestation
of weak atomic bonding, the thermal conductivity enhance-
ment also correlates strongly with the effective bond stiffness
[Fig. 3(d)] [30].

Now that it is established that the three-phonon scattering
phase space and effective bond stiffness are instrumental in
describing the individual effects of four-phonon scattering
and phonon renormalization, the otherwise puzzling thermal
conductivity data of Fig. 1(b) is replotted in Fig. 4 as a
function of two simple material descriptors, namely, weighted
three-phonon scattering phase space and effective bond stiff-
ness. The weighted three-phonon scattering phase space γ

is obtained as γ =
∑

q

∑
ν cqνv

2
qν,αγqν∑

q

∑
ν cqνv2

qν,α
, where γqν represents the

scattering phase space of mode qν. As can be seen from
Fig. 4, these descriptors are able to characterize the role
of higher-order theory on the predicted thermal conductiv-
ity and suggest that (i) for materials with weak interatomic
bonding, the thermal conductivity increases with higher-order
corrections, (ii) for materials with reduced three-phonon scat-
tering phase space, the thermal conductivity decreases with
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FIG. 5. The mode-dependent contribution to thermal conductiv-
ity of SbRbK2 from particlelike phonon (red and black lines) and
wavelike coherent (purple line) transport channels. The red and black
data sets correspond to results obtained using the lowest-order theory
and higher-order theory. The dashed horizontal line represents the
Ioffe-Regel limit [31,32].

higher-order corrections, and (iii) for materials with stiff
bonds and high three-phonon scattering phase space, there is
no significant change in thermal conductivity. As such, these
simple (based on bare harmonic properties) and yet powerful
descriptions can be used for the accelerated discovery/

screening of ultralow thermal conductivity materials without
requiring computationally expensive calculations.

Using the lowest-order transport theory, the predicted ther-
mal conductivity of two compounds is lower than 0.2 W/m K
at a temperature of 300 K which is comparable to the reported
lowest thermal conductivity of solids in literature [9,15,21].
For such low thermal conductivity materials, the phonon
mean free paths could become shorter than the Ioffe-Regel
limit, and in such cases, an additional contribution from the
wavelike coherent transport channel becomes significant to-
wards the thermal transport [15,17,31]. To check for this, the

phonon mean free paths are compared against the Ioffe-Regel
limit [32] for the lowest thermal conductivity (as obtained
from the lowest-order theory) compound in Fig. 5.

As can be seen from Fig. 5, while the phonon mean free
paths are shorter than the Ioffe-Regel limit for the majority
of the phonons using the lowest-order theory, the mean free
paths increase to values larger than the Ioffe-Regel limit on the
inclusion of higher-order corrections. As such, the particlelike
phonon picture is valid for the majority of the phonons and
the contribution of the wavelike coherent transport channel is
minimal (less than 13% for SbRbK2 using the higher-order
theory as opposed to more than 30% using the lowest-order
theory). This validity of the particlelike phonon picture on the
incorporation of higher-order corrections and its failure at the
lowest order of theory highlights the importance of describing
correct phonon properties in multichannel transport models to
correctly capture the underlying thermal transport physics.

IV. CONCLUSIONS

In summary, by investigating the thermal transport in eight
ternary semiconducting solids using the higher-order trans-
port theory, the weighted three-phonon scattering phase space
and effective bond stiffness are identified as simple material
descriptors to characterize the puzzling role of higher-order
four-phonon scattering and phonon renormalization on the
predicted thermal conductivity of materials. The higher-order
corrections are essential for the correct description of thermal
transport physics in ultralow thermal conductivity solids and
the use of the lowest-order theory erroneously suggests multi-
channel thermal transport in such materials.
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Lett. 124, 065901 (2020).
[14] N. K. Ravichandran and D. Broido, Phys. Rev. X 10, 021063

(2020).
[15] S. Mukhopadhyay, D. S. Parker, B. C. Sales, A. A. Puretzky,

M. A. McGuire, and L. Lindsay, Science 360, 1455 (2018).
[16] Y. Luo, X. Yang, T. Feng, J. Wang, and X. Ruan, Nat. Commun.

11, 2554 (2020).
[17] M. Simoncelli, N. Marzari, and F. Mauri, Nat. Phys. 15, 809

(2019).
[18] J. A. Reissland, The Physics of Phonons (Wiley, New York,

1973).

045207-5

https://doi.org/10.1103/PhysRevB.77.144112
https://doi.org/10.1103/PhysRevB.84.085204
https://doi.org/10.1016/j.mtphys.2018.11.008
https://doi.org/10.1063/1.5064602
https://doi.org/10.1103/PhysRevLett.111.025901
https://doi.org/10.1103/PhysRevB.87.165201
https://doi.org/10.1016/j.commatsci.2015.08.014
https://doi.org/10.1126/science.aaz6149
https://doi.org/10.1103/PhysRevB.102.201201
https://doi.org/10.1103/PhysRevB.104.115403
https://doi.org/10.1103/PhysRevB.98.085205
https://doi.org/10.1103/PhysRevB.97.045202
https://doi.org/10.1103/PhysRevLett.124.065901
https://doi.org/10.1103/PhysRevX.10.021063
https://doi.org/10.1126/science.aar8072
https://doi.org/10.1038/s41467-020-16371-w
https://doi.org/10.1038/s41567-019-0520-x


ANKIT JAIN PHYSICAL REVIEW B 106, 045207 (2022)

[19] M. T. Dove, Introduction to Lattice Dynamics (Cambridge Uni-
versity Press, Cambridge, UK, 1993).

[20] D. C. Wallace, Thermodynamics of Crystals (Cambridge Uni-
versity Press, Cambridge, UK, 1972).

[21] S. Godse, Y. Srivastava, and A. Jain, J. Phys.: Condens. Matter
34, 145701 (2022).

[22] T. Feng, L. Lindsay, and X. Ruan, Phys. Rev. B 96, 161201(R)
(2017).

[23] M. Simoncelli, N. Marzari, and F. Mauri, arXiv:2112.06897.
[24] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.

Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I.
Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R.
Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos et al., J. Phys.: Condens. Matter 21, 395502
(2009).

[25] M. Schlipf and F. Gygi, Comput. Phys. Commun. 196, 36
(2015).

[26] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev.
Mod. Phys. 73, 515 (2001).

[27] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.106.045207 for details about force constant
extraction, computational methodology, convergence of results
with employed numerical parameters, and mode-dependent
phonon properties of all reported materials, which includes
Refs. [33–36].

[28] Note that as presented in Sec. S6, the number of four-phonon
processes, i.e., four-phonon scattering, the phase space is
nonzero for all modes and is minimally affected by frequency
gaps in the phonon spectrum.

[29] See Sec. S6 in the SM for the relative bonding strength
of s- vs p-block atoms at the A/B sites in the considered
materials.

[30] The effective stiffness is obtained by displacing atoms by
a small amount (up to 0.1 Å) around their equilibrium po-
sitions to sample the effective potential energy surface.
Note that this corresponds to an on-site self-harmonic force
constant.

[31] A. F. Ioffe and A. R. Regel, Progress in Semiconductors, Vol. 4
(Wiley, New York, 1960).

[32] The Ioffe-Regel limit is obtained as the minimum interatomic
spacing in the lattice.

[33] D. West and S. Estreicher, Phys. Rev. Lett. 96, 115504
(2006).

[34] O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak, Phys.
Rev. B 87, 104111 (2013).

[35] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S.
Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A.
Persson, APL Mater. 1, 011002 (2013).

[36] C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley,
New York, 1986).

045207-6

https://doi.org/10.1088/1361-648x/ac4b2c
https://doi.org/10.1103/PhysRevB.96.161201
http://arxiv.org/abs/arXiv:2112.06897
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1016/j.cpc.2015.05.011
https://doi.org/10.1103/RevModPhys.73.515
http://link.aps.org/supplemental/10.1103/PhysRevB.106.045207
https://doi.org/10.1103/PhysRevLett.96.115504
https://doi.org/10.1103/PhysRevB.87.104111
https://doi.org/10.1063/1.4812323

