Mathematics Comprehensive Examination - Spring 2022

Time: 3 hours

Note:

- Closed book, closed notes examination
- Respect the spirit of examination and refrain from any unfair means
- Justify each step in your solution as far as possible

1. (a) (10 marks) Using the linear algebra techniques you have learnt, compute the volume of the parallelepiped P in \mathbb{R}^{3} whose vertices are given by $(0,0,0),(3,0,0),(4,4,-1),(1,4,-1),(1,2,5)$, $(4,2,5),(5,6,4),(2,6,4)$. (Try to draw the geometry of the parallelepiped)
(b) (10 marks) Generalize the method you devised in (a), to provide a procedure to compute the volume of a parallelepiped in \mathbb{R}^{n}. Specifically, consider P, a parallelepiped in \mathbb{R}^{n}, and let $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots \mathbf{x}_{2^{n}}$ be the vertices of $P\left(P\right.$ is not necessarily oriented with the principal axes in $\left.\mathbb{R}^{n}\right)$. How would you compute the volume of P using linear algebra techniques you have learnt. You just need to provide an algorithmic procedure, not a closed form solution. (Hint: In Part (a), consider the volume of one of the faces (parallelogram) of the parallelepiped in \mathbb{R}^{3}, how are the volumes of the parallelogram and that of parallelepiped related?)
2. For each continuous function $f(x, y)$ on the x, y-plane, and each path C from $(0,1)$ to $(\pi, 1)$, consider the contour integral

$$
\int_{C} y \sin ^{2}(x) d x+f(x, y) d y
$$

(a) (7 marks) Find a choice of the function $f(x, y)$ such that the value of the above integral is independent of the choice of the path C from $(0,1)$ to $(\pi, 1)$.
(b) (3 marks) For your choice of f, evaluate the above integral for any choice of path C as above.
3. Laplace Transform of a function $f(t)$ is given as,

$$
\bar{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

(a) (3 marks) Use integration by parts and definition to calculate the Laplace Transform of $\int_{0}^{t} f\left(t^{\prime}\right) d t^{\prime}$.
(b) (2 marks) Use the obtained result to solve the following equation,

$$
\frac{d u}{d t}=\int_{0}^{t} u\left(t^{\prime}\right) d t^{\prime}
$$

if $u(0)=2$.
4. (5 marks) The modified Bessel function $I_{0}(x)$ is the solution to the following differential equation,

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-x^{2} y=0
$$

The leading term in the asymptotic expansion of $I_{0}(x)$ about $x=0$ is,

$$
I_{0}(x) \backsim \frac{e^{x}}{\sqrt{2 \pi x}}
$$

Assume a series form for I_{0} as,

$$
I_{0}(x)=\frac{e^{x}}{\sqrt{2 \pi x}}\left\{1+b_{1} x^{-1}+b_{2} x^{-2}+\ldots\right\}
$$

Determine the coefficients b_{1} and b_{2}.
5. The one-dimensional diffusion equation is given as,

$$
\begin{equation*}
\frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial x^{2}} \tag{1}
\end{equation*}
$$

where D is a real constant, $c(x, t)$ is a field variable, x is the position co-ordinate and t is the time.
(a) (2 marks) Show that

$$
J(x, t)=D \frac{\partial c}{\partial x}
$$

also satisfies the diffusion equation.
(b) (1 mark) The solution of the Eq. 1 applicable on a domain $0 \leq x \leq l$ for initial concentration $c(x, 0)=0$ and boundary conditions $c(0, t)=0$ and $c(l, t)=c_{2}$ is,

$$
c(x, t)=c_{2} \frac{x}{l}+\frac{2}{\pi} \sum_{n=1}^{\infty} c_{2} \frac{(-1)^{n}}{n} \sin \left(\frac{n \pi x}{l}\right) \exp \left(-\frac{D n^{2} \pi^{2} t}{l^{2}}\right)
$$

Check if the solution indeed satisfies the boundary conditions.
(c) (4 marks) The half-range periodic Fourier cosine series for an even function $f(x)$ is given as,

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{l}\right) \cdot 0 \leq x \leq l
$$

The coefficients a_{0} and a_{n} can be deduced by exploiting the orthogonality of cosine and sine functions. Express

$$
f(x)=\frac{x^{2}}{2 l^{2}}-\frac{1}{6}, \quad 0 \leq x \leq l
$$

as a half-range periodic Fourier cosine series.
(d) (8 marks) Use the answers to the sub-questions (b) and (c) and write down (derivation of the solution not required) the solution of diffusion equation applicable on a domain $-l \leq x \leq l$ with the following conditions,

$$
c(x, 0)=0,\left.D \frac{\partial c}{\partial x}\right|_{x=-l}=\left.D \frac{\partial c}{\partial x}\right|_{x=l}=F_{0}
$$

Justify the written solution. Note the symmetry in the problem.
6. (5 marks) Given a differential equation,

$$
\frac{d^{2} y}{d x^{2}}=-f(x)
$$

applicable on domain $[0,1]$. Derive the solution $y(x)$ in terms of $f(x)$ using either Variation of Parameters or integration by parts subjected to the boundary conditions,

$$
\left.y\right|_{x=0}=0,\left.\quad\left(y+\frac{d y}{d x}\right)\right|_{x=1}=0
$$

