Department of Mechanical Engineering, IIT Bombay
Ph. D. Qualifying Examination: Applied Mathematics
January 2023
Total Questions: 9, Total points: 100, Time: 3 Hours
Minimum passing score: 40 points
Closed Book, Closed Notes Examination, TWO-A4 sheets (both sides) permitted Fourier Transform Table on Page 3

1. Find the general solution to the following system (homogeneous and non-homogeneous parts). Note that $x_{1} \ldots x_{4}$ are scalar components of the column vector \mathbf{x}. What is the vector in the null space of A ?
(10 marks)

$$
\begin{gathered}
-x_{1}+2 x_{2}-x_{3}+x_{4}=0 \\
2 x_{1}-3 x_{2}-x_{4}=-1 \\
3 x_{1}-5 x_{2}+x_{3}+2 x_{4}=0
\end{gathered}
$$

2. Given a matrix $\mathbf{A}=\left[\begin{array}{cc}1 & 1 \\ 2 & -1 \\ -2 & 4\end{array}\right]$. Find the orthonormal set $\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}$, where \mathbf{q}_{1} and \mathbf{q}_{2} span the column space of \mathbf{A}.
(8 marks)
3. Consider the matrix $\mathbf{A}=\left[\begin{array}{ll}0.8 & 0.3 \\ 0.2 & 0.7\end{array}\right]$. The powers \mathbf{A}^{k} of this matrix approach a certain limit as k $\rightarrow \infty$. Given $\mathbf{A}^{2}=\left[\begin{array}{ll}0.7 & 0.45 \\ 0.3 & 0.55\end{array}\right]$, and $\mathbf{A}^{\infty}=\left[\begin{array}{ll}0.6 & 0.6 \\ 0.4 & 0.4\end{array}\right]$. Using the eigenvalues and eigenvectors of \mathbf{A}, show why $\mathbf{A}^{2}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\infty}\right)$?
(7 marks)
4. A vibrating string is kept inside a periodic box simulator with dimensions $[-L, L]$. The string is given some prescribed displacement and velocity at the two ends, i.e., $-L$ and L. The overall displacement of the string, $y(t)$, is governed by the equation that takes the form:

$$
\frac{d^{2} y}{d t^{2}}+\alpha y=0
$$

where α is a constant. Assuming periodic boundary conditions find the eigen-values and eigen functions for this configuration.
(10 marks)
5. Convert the following equation into Sturm Liouville form (if not already in that form).

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+\lambda y=0 \tag{5marks}
\end{equation*}
$$

6. A vector valued function in a single variable t is used to define the position vector, \vec{r}, which is used to form a curve given by:

$$
\vec{r}(t)=\langle t, 3 \sin t, 3 \cos t\rangle
$$

(a) Find the unit normal to this curve.
(b) Find the arc length.
(c) If a particle characterized by the function $F(x, y, z)=8 x^{2} y z \hat{\boldsymbol{\imath}}+5 z \hat{\boldsymbol{\jmath}}-4 x y \widehat{\boldsymbol{k}}$ skates on this curve, calculate the line integral of F.
(3 marks)
(d) Determine the acceleration of this particle
7. Solve the following coupled system of first order equations for $u(x, t), v(x, t)$ over $-\infty<x<$ ∞

$$
\begin{aligned}
& u_{t}+5 u_{x}-4 v_{x}=0 \\
& v_{t}-4 u_{x}+5 v_{x}=0
\end{aligned}
$$

with given initial conditions $u(x, 0)=f(x), v(x, 0)=g(x)$.
Do NOT use integral (Fourier/Laplace, etc.) transforms to solve this problem.
Hint: diagonalize the matrix $\left(\begin{array}{cc}5 & -4 \\ -4 & 5\end{array}\right)$ and then solve the uncoupled equations. Decouple the equations by using the transformation $\binom{w_{1}(x, t)}{w_{2}(x, t)}=P\binom{u(x, t)}{v(x, t)}$ where P is an appropriately chosen 2×2 matrix. Assume that all functions are as smooth/continuously differentiable and bounded as necessary to carry out all mathematical operations and for solutions and/or transforms to exist.
(15 marks)
8. The Fourier transform $F(\omega)$ of $f(x)$ and its inverse are defined as follows:

$$
\begin{aligned}
& F(\omega)=\frac{1}{\sqrt{ }(2 \pi)} \int_{-\infty}^{\infty} f(x) e^{i \omega x} d x \\
& f(x)=\frac{1}{\sqrt{ }(2 \pi)} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} d x
\end{aligned}
$$

Use the above definition of the Fourier transform and the accompanying transform table to solve the heat equation for $u(x, t)$

$$
u_{t}=u_{x x}
$$

over $-\infty<x<\infty$. The boundary conditions are $u(x, t), u_{t}(x, t) \rightarrow 0$ as $x \rightarrow \pm \infty$ and the initial condition is $u(x, 0)=\left(1-2 x^{2}\right) e^{-4 x^{2}}$. Assume that all functions are as smooth/continuously differentiable and bounded as necessary to carry out all mathematical operations and for solutions and/or transforms to exist. Note: Fourier transform the x and the not the t variable.
(10 marks)
9. In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force $F=m \frac{d^{2} y}{d x^{2}}$ proportional to the displacement y :

$$
\begin{equation*}
m \frac{d^{2} y}{d x^{2}}=-k y \tag{1}
\end{equation*}
$$

where k is a positive constant. If F is the only force acting on the system, the system is called a simple harmonic oscillator, and it undergoes simple harmonic motion: sinusoidal oscillations about the equilibrium point, with a constant amplitude and a constant frequency (which does not depend on the amplitude). So, consider such a simple harmonic oscillator, consisting of a mass $m=2 \mathrm{~kg}$, and experiencing a single force F, which pulls the mass in the direction of the point $y=0$ and depends only on the position y of the mass and a constant $k=98 \mathrm{~N} / \mathrm{m}$.

Using ONLY the Frobenius series given by

$$
\begin{equation*}
y(x)=\sum_{j=0}^{\infty} a_{j} x^{j+s} \tag{2}
\end{equation*}
$$

solve the linear harmonic oscillator equation (1). DO NOT USE any other series form other than equation (2)
(25 marks)

Table of Fourier Transforms

	$f(x)=\mathcal{F}^{-1}[F](x)$	$F(\omega)=\mathcal{F}[f](\omega)$
1	$f^{\prime}(x)$	$-i \omega F(\omega)$
2	$f^{\prime \prime}(x)$	$-\omega^{2} F(\omega)$
3	$f(a x+b) \quad(a>0)$	$\frac{1}{a} e^{-i(b / a) \omega} F(\omega / a)$
4	$(f * g)(x)$	$F(\omega) G(\omega)$
5	$\delta(x)$	$\frac{1}{\sqrt{2 \pi}}$
6	$e^{i a x} f(x)$	$F(\omega+a)$
7	$e^{-a^{2} x^{2}}$	$\frac{1}{\sqrt{2} a} e^{-\omega^{2} /\left(4 a^{2}\right)}$
8	$x e^{-a^{2} x^{2}} \quad(a>0)$	$\frac{i}{2 \sqrt{2} a^{3}} \omega e^{-\omega^{2} /\left(4 a^{2}\right)}$
9	$x^{2} e^{-a^{2} x^{2}} \quad(a>0)$	$\frac{1}{4 \sqrt{2} a^{5}}\left(2 a^{2}-\omega^{2}\right) e^{-\omega^{2} /\left(4 a^{2}\right)}$
10	$\frac{1}{x^{2}+a^{2}} \quad(a>0)$	$\sqrt{\frac{\pi}{2}} \frac{1}{a} e^{-a\|\omega\|}$
11	$\frac{x}{x^{2}+a^{2}} \quad(a>0)$	$-i \sqrt{\frac{\pi}{2}} \frac{1}{2 a} \omega e^{-a\|\omega\|}$
12	$H(a-\|x\|)= \begin{cases}1, & \|x\| \leq a \\ 0, & \|x\|>a\end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin (a \omega)}{\omega}$
13	$x H(a-\|x\|)= \begin{cases}x, & \|x\| \leq a \\ 0, & \|x\|>a\end{cases}$	$i \sqrt{\frac{2}{\pi}} \frac{1}{\omega^{2}}[\sin (a \omega)-a \omega \cos (a \omega)]$
14	$e^{-a\|x\|}$	$\sqrt{\frac{2}{\pi}} \frac{a}{a^{2}+\omega^{2}}$
15	$e^{-(x+b)^{2} /(4 a)}+e^{-(x-b)^{2} /(4 a)}$	$2 \sqrt{2 a} e^{-a \omega^{2}} \cos (b \omega)$
16	$\operatorname{erf}(a x)$	$i \sqrt{\frac{2}{\pi}} \frac{1}{\omega} e^{-\omega^{2} /\left(4 a^{2}\right)}$

