Department of Mechanical Engineering, IIT Bombay Ph. D. Qualifying Examination: <u>Applied Mathematics</u> January 2023 Total Questions: 9, Total points: 100, Time: 3 Hours Minimum passing score: 40 points Closed Book, Closed Notes Examination, TWO-A4 sheets (both sides) permitted Fourier Transform Table on Page 3

Find the general solution to the following system (homogeneous and non-homogeneous parts). Note that x1...x4 are scalar components of the column vector x. What is the vector in the null space of A?
 (10 marks)

$$\begin{array}{rrrr} -x_1 + 2x_2 - x_3 + x_4 &= 0\\ 2x_1 - 3x_2 - x_4 &= -1\\ 3x_1 - 5x_2 + x_3 + 2x_4 &= 0 \end{array}$$

- 2. Given a matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}$. Find the <u>orthonormal</u> set \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 , where \mathbf{q}_1 and \mathbf{q}_2 span the column space of \mathbf{A} . (8 marks)
- 3. Consider the matrix $\mathbf{A} = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$. The powers \mathbf{A}^k of this matrix approach a certain limit as $k \rightarrow \infty$. Given $\mathbf{A}^2 = \begin{bmatrix} 0.7 & 0.45 \\ 0.3 & 0.55 \end{bmatrix}$, and $\mathbf{A}^{\infty} = \begin{bmatrix} 0.6 & 0.6 \\ 0.4 & 0.4 \end{bmatrix}$. Using the eigenvalues and eigenvectors of \mathbf{A} , show why $\mathbf{A}^2 = \frac{1}{2}(\mathbf{A} + \mathbf{A}^{\infty})$? (7 marks)
- 4. A vibrating string is kept inside a periodic box simulator with dimensions [-*L*, *L*]. The string is given some prescribed displacement and velocity at the two ends, i.e., -*L* and *L*. The overall displacement of the string, y(t), is governed by the equation that takes the form:

$$\frac{d^2y}{dt^2} + \alpha y = 0$$

where α is a constant. Assuming periodic boundary conditions find the eigen-values and eigen functions for this configuration. (10 marks)

5. Convert the following equation into Sturm Liouville form (if not already in that form).

$$y'' - 2y' + \lambda y = 0$$
 (5 marks)

6. A vector valued function in a single variable *t* is used to define the position vector, \vec{r} , which is used to form a curve given by:

$$\vec{r}(t) = \langle t, 3 \sin t, 3 \cos t \rangle$$

(a) Find the unit normal to this curve.

- (b) Find the arc length. (2 marks)
- (c) If a particle characterized by the function $F(x, y, z) = 8x^2yz \hat{\imath} + 5z\hat{\jmath} 4xy\hat{k}$ skates on this curve, calculate the line integral of *F*. (3 marks)
- (d) Determine the acceleration of this particle

(3 marks)

(2 marks)

7. Solve the following coupled system of first order equations for u(x,t), v(x,t) over $-\infty < x < \infty$

$$u_t + 5u_x - 4v_x = 0$$
$$v_t - 4u_x + 5v_x = 0$$

with given initial conditions u(x, 0) = f(x), v(x, 0) = g(x).

Do NOT use integral (Fourier/Laplace, etc.) transforms to solve this problem. Hint: diagonalize the matrix $\begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix}$ and then solve the uncoupled equations. Decouple the equations by using the transformation $\begin{pmatrix} w_1(x,t) \\ w_2(x,t) \end{pmatrix} = P \begin{pmatrix} u(x,t) \\ v(x,t) \end{pmatrix}$ where *P* is an appropriately chosen 2 × 2 matrix. Assume that all functions are as smooth/continuously differentiable and bounded as necessary to carry out all mathematical operations and for solutions and/or transforms to exist. (15 marks)

8. The Fourier transform $F(\omega)$ of f(x) and its inverse are defined as follows:

$$F(\omega) = \frac{1}{\sqrt{(2\pi)}} \int_{-\infty}^{\infty} f(x) e^{i\omega x} dx$$
$$f(x) = \frac{1}{\sqrt{(2\pi)}} \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx$$

Use the above definition of the Fourier transform and the accompanying transform table to solve the heat equation for u(x, t)

$$u_t = u_{xx}$$

over $-\infty < x < \infty$. The boundary conditions are $u(x,t), u_t(x,t) \to 0$ as $x \to \pm \infty$ and the initial condition is $u(x,0) = (1-2x^2)e^{-4x^2}$. Assume that all functions are as smooth/continuously differentiable and bounded as necessary to carry out all mathematical operations and for solutions and/or transforms to exist. Note: Fourier transform the *x* and the not the *t* variable. (10 marks)

9. In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force $F = m \frac{d^2 y}{dx^2}$ proportional to the displacement *y*:

$$m\frac{d^2y}{dx^2} = -ky,\tag{1}$$

where k is a positive constant. If F is the only force acting on the system, the system is called a *simple harmonic oscillator*, and it undergoes simple harmonic motion: sinusoidal oscillations about the equilibrium point, with a constant amplitude and a constant frequency (which does not depend on the amplitude). So, consider such a simple harmonic oscillator, consisting of a mass m = 2 kg, and experiencing a single force F, which pulls the mass in the direction of the point y = 0 and depends only on the position y of the mass and a constant k = 98 N/m.

Using ONLY the Frobenius series given by

$$y(x) = \sum_{j=0}^{\infty} a_j x^{j+s}$$
⁽²⁾

solve the linear harmonic oscillator equation (1). DO NOT USE any other series form other than equation (2) (25 marks)

	$f(x) = \mathcal{F}^{-1}[F](x)$	$F(\omega) = \mathcal{F}[f](\omega)$
1	f'(x)	$-i\omega F(\omega)$
2	f''(x)	$-\omega^2 F(\omega)$
3	f(ax+b) (a>0)	$\frac{1}{a}e^{-i(b/a)\omega}F(\omega/a)$
4	(f * g)(x)	$F(\omega)G(\omega)$
5	$\delta(x)$	$\frac{1}{\sqrt{2\pi}}$
6	$e^{iax}f(x)$	$F(\omega + a)$
7	$e^{-a^2x^2}$	$\frac{1}{\sqrt{2}a}e^{-\omega^2/(4a^2)}$
8	$xe^{-a^2x^2} (a>0)$	$\frac{i}{2\sqrt{2}a^3}\omega e^{-\omega^2/(4a^2)}$
9	$x^2 e^{-a^2 x^2}$ (a > 0)	$\frac{1}{4\sqrt{2}a^5}(2a^2-\omega^2)e^{-\omega^2/(4a^2)}$
10	$\frac{1}{x^2 + a^2} (a > 0)$	$\sqrt{\frac{\pi}{2}} \frac{1}{a} e^{-a \omega }$
11	$\frac{x}{x^2 + a^2} (a > 0)$	$-i\sqrt{\frac{\pi}{2}}\frac{1}{2a}\omega e^{-a \omega }$
12	$H(a - x) = \begin{cases} 1, & x \le a \\ 0, & x > a \end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin(a\omega)}{\omega}$
13	$xH(a- x) = \begin{cases} x, & x \le a \\ 0, & x > a \end{cases}$	$i\sqrt{\frac{2}{\pi}}\frac{1}{\omega^2}\left[\sin(a\omega) - a\omega\cos(a\omega)\right]$
14	$e^{-a x }$	$\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + \omega^2}$
15	$e^{-(x+b)^2/(4a)} + e^{-(x-b)^2/(4a)}$	$2\sqrt{2a}e^{-a\omega^2}\cos(b\omega)$
16	$\operatorname{erf}(ax)$	$i\sqrt{\frac{2}{\pi}}\frac{1}{\omega}e^{-\omega^2/(4a^2)}$

Table of Fourier Transforms