Department of Mechanical Engineering, IIT Bombay Solid Mechanics Qualifying Examination (Spring 2020)

Instructions:

- 1. Total points: 50. Passing: 20.
- 2. Each question carries 10 points. There are total 6 questions.
- 3. Best 5 out of 6 will be considered for final grading. Please attempt at least five questions.
- 4. There are three parts. Solve the questions of each part in separate answer-books.
- 5. The examination is closed-books and closed-notes.
- 6. State your assumptions clearly. Clearly write the formulae you are using during the solution.
- 7. Partial points will be awarded for correct intermediate steps. Full points will be awarded only if all the answers are numerically accurate.
- 8. Unless otherwise stated, please ignore the effect of gravity.

Part A

(Solve in a separate answer-book.)

1. [10 points] A rectangular parallelepiped body occupies the region $-a \le x_1 \le a$, $-a \le x_2 \le a$ and $-b \le x_3 \le b$ in the current configuration. The stress tensor in the body is given by,

$$\sigma = \frac{c}{a^2} \begin{bmatrix} -(x_1^2 - x_2^2) & 2x_1x_2 & 0\\ 2x_1x_2 & x_1^2 - x_2^2 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

where a, b and c are positive constants and b > a.

- (a) [3 points] Show that σ satisfies the balance of linear momentum in the static case with no body force.
- (b) [3 points] Determine the tractions that must be applied to each of the six faces of the body in order for the body to be in equilibrium.
- (c) [4 points] The principal values (eigenvalues) of the stress tensor (principal stresses) are denoted σ_i , (i=1,2,3), such that $\sigma_1 \geq \sigma_2 \geq \sigma_3$. These give the maximum and minimum normal stresses at a point. It can be shown that the maximum shear stress is given by $\tau_{\text{max}} = (\sigma_1 \sigma_3)/2$. Calculate the principal stresses of σ as a function of position. Then find the maximum value of τ_{max} in the full domain of the body.

2. [10 points] Consider the axisymmetric plane strain problem of a solid circular bar of radius a with a constant internal heat generation specified by h_0 . The steady state conduction equation for temperature field T(r) thus becomes

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + h_0 = 0.$$

Using boundary condition $T(a) = T_0$, and all fields must remain bounded everywhere including at r = 0,

- (a) [4 points] determine the temperature distribution, i.e., calculate T(r) and
- (b) [6 points] calculate the resulting thermal stresses σ_r , σ_θ , σ_z , and $\tau_{r\theta}$, $\tau_{z\theta}$, τ_{rz} , for the case with zero boundary stresses at r=a. For the axisymmetric case for circular bar, all field quantities depend only on the radial coordinate, i.e., $\sigma_r = \sigma_r(r)$, $\sigma_\theta = \sigma_\theta(r)$, $\tau_{r\theta} = \tau_{r\theta}(r)$, T = T(r). So the Airy stress function $\phi = \phi(r)$ is defined by

$$\sigma_r = \frac{1}{r} \frac{d\phi}{dr}, \quad \sigma_\theta = \frac{d^2\phi}{dr^2}, \quad \tau_{r\theta} = 0.$$

Also, the compatibility condition for the plane strain problem is

$$\nabla^4 \phi + \frac{E\alpha}{1 - \nu} \nabla^2 T = 0,$$

which can be used for calculating the thermal stresses, where E is the Elastic modulus, α is the coefficient of thermal expansion and ν is Poisson's ratio.

Hint: When T = T(r), for the axisymmetric plane strain problem, prove that

$$\begin{split} \nabla^2 T &= \frac{d^2 T}{dr^2} + \frac{1}{r} \frac{dT}{dr}, \\ \nabla^4 \phi &= \frac{1}{r} \frac{d}{dr} \left\{ r \frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{d\phi}{dr} \right) \right] \right\}, \end{split}$$

where, in polar coordinates,

$$\begin{split} \nabla^2 &= \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}, \\ \nabla^4 &= \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right). \end{split}$$

Such solutions are useful to determine the thermal stresses in rods made of radioactive materials.

Part B

(Solve in a separate answer-book.)

3. [10 points] An Euler-Bernoulli beam of constant flexural rigidity EI is simply supported at its ends x = 0 and x = L and has a uniformly distributed load q (per unit length) acting on it as shown in Fig. 1. Use the minimum potential energy theorem to determine the transverse

Figure 1: An Euler-Bernoulli beam

deflection w of the beam at x = L/2 for the following two cases:

- (a) [4 points] Assume $w(x) = a_1x(L-x)$, where a_1 is an unknown coefficient.
- (b) [4 points] Assume $w(x) = a_1 \sin(\pi x/L)$, where a_1 is an unknown coefficient.
- (c) [2 points] Compare the solutions with the exact solution:

$$w(\mathbf{x} = \mathbf{L}/2)_{\text{exact}} = \frac{5\mathbf{q}\mathbf{L}^4}{384\mathbf{EI}},$$

and obtain percentage errors in both cases.

4. [10 points] Consider a solid body subject to small deformations. Let e_1, e_2 and e_3 be the unit orthonormal Cartesian base vectors (Canonical basis) along x, y and z coordinate axes, respectively. Consider three points P, Q and R in the body. The position vectors of these points before deformation are $\mathbf{r_P} = 2e_1 + 2e_2 + 3e_3$, $\mathbf{r_Q} = 4e_1 + 4e_2 + 5e_3$ and $\mathbf{r_R} = 5e_1 + 5e_2 + 3e_3$. The following displacement field is imposed on the body:

$$u = k(x^2 + y)e_1 + k(y + z)e_2 + k(x^2 - 2z^2)e_3$$
, where, $k = 10^{-3}$.

- (a) [3 points] Using the strain-displacement relations, evaluate all the small strain tensor components at point P.
- (b) [2 points] Consider the linear material elements PQ and PR. Find the extensional (longitudinal) strains ϵ_{PQ} and ϵ_{PR} at point P in the directions of PQ and PR, respectively.
- (c) [3 points] After deformation, the points P, Q and R occupy new positions P', Q' and R', respectively. Find the orientations of the deformed line segments P'Q' and P'R' using ϵ_{PQ} and ϵ_{PR} .
- (d) [2 points] Find the angle θ between the original undeformed line segments PQ and PR. Also, find the angle θ' between the deformed line segments P'Q' and P'R' using ϵ_{PQ} and ϵ_{PR} .

Part C

(Solve in a separate answer-book.)

- 5. [10 points] A long cylindrical solid shaft with cross-sectional diameter D has Young's modulus E, shear modulus G and uniaxial tensile yield stress Y. The shaft carries an axial torque T, axial force P and bending moment M.
 - (a) [5 points] Work out and write down the maximum tensile stress and the maximum shear stress in the shaft in terms of the given quantities.
 - (b) [5 points] Use the Tresca (maximum shear stress theory) yield criterion to determine the combination of P, T, M at which the failure of the shaft by plastic deformation is just initiated.
- 6. [10 points] Consider a long elastic beam/column of length L and flexural rigidity EI. The beam is held fixed into the wall at one end and is free at the other end. An axial compressive force P and a bending moment M_0 are applied at the free end as shown in Fig. 2.

Figure 2: A beam of length L subject to an axial compressive force P and a bending moment M_0 at the free end.

- (a) [2 points] Set up the governing second-order differential equation to find the buckling load P_c of the beam.
- (b) [4 points] Solve the differential equation to obtain the transverse deflection of the beam for a given axial load $P < P_c$ and moment M_0 .
- (c) [4 points] Determine the maximum bending moment in the beam for a given axial load $P < P_c$ and moment M_0 .