
PhD Qualifying Examination in Solid Mechanics [Jan 2019]
Department of Mechanical Engineering, IIT Bombay

Total points: 60
___________________________________________________________________________
Instructions:
 Examination is closed book, closed notes.

 Solve every question on a separate answer sheet.
 Clearly mention any assumptions you make.
 For questions involving numbers: Full points will be awarded only if all the answers are

numerically accurate. Partial points may be awarded if the numerical answers are wrong
but the formulae used or procedure followed is correct. For all steps, first clearly write the
formulae you are using during the solution.

Q1. Let  e1,  e2 and  e3 be the unit orthonormal Cartesian base vectors (canonical basis). At a
particular point in a body, the traction vectors on different planes are as follows: 
t(n) = 4e1 when n = e1; t(n) = -3√3e2 - 5e3 when n = e3; and t(n) = (4/√6) e1 + [(2-3√3)/√6] e2

– [(6√3+5)/√6] e3 when n = (1/√6)(e1 + 2 e2 + e3).

a) Find the traction vector t(n) when n = e2? [2]

b) Find the Cauchy stress tensor σ at this point. [1]

c) Find the magnitude of normal stress Tn and the magnitude of shear stress Ts on a plane
with normal m = (1/√3)(e1 + e2 + e3) at the given point. [1]

d) Find the principal stresses and principal directions (n1, n2, n3) of the Cauchy stress σ
at this point. [3]

e) Let a new set of orthonormal basis vectors (e1*, e2*, e3*) coincide with the principal
directions (n1, n2, n3) of the stress tensor σ. Find the orthogonal tensor Q that rotates
vectors from (e1, e2, e3) basis to (e1*, e2*, e3*) basis. [1]

f) Using the above tensor  Q and stress  tensor  σ obtained above,  find  the  matrix  of
components  of  the  stress  tensor  σ*  in  the  (e1*,  e2*,  e3*)  basis.  Comment  on  the
form/structure of σ*. [2] 

Q2. Consider a solid  body subjected to small  deformations.  Let  e1,  e2 and  e3 be the unit
orthonormal  Cartesian  base  vectors  (Canonical  basis)  along  x,  y  and  z  coordinate  axes,
respectively. Consider two points P, Q in the body infinitesimally close to each other. The
position vector of point P is rP = 2e1 + 2e2 + 3e3, while the direction cosine of line segment
PQ is (e1 + e2 + e3)/√3.  The following displacement field is imposed on the body:
           

               u = k(x2 + y2)e1 + k(y2+z2)e2 + k(x2+2z2)e3, where k = 10-3.

After deformation, the points P, Q occupy new positions P’, Q’, respectively.
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a) Using  the  strain-displacement  relations,  evaluate  all  the  small  strain  tensor
components at point P. [2]

b) Evaluate Λ = [(P’Q’)2-(PQ)2]/(PQ)2. Note that PQ and P’Q’ denote the straight line
distance between points P, Q and P’, Q’ respectively. [3]

c) If P’Q’ = PQ(1+εPQ) then express εPQ in terms of Λ and solve for εPQ  ignoring any 2nd

and higher order terms in εPQ. [2]

d) Find the direction cosines or orientation of the deformed line segments P’Q’.  [3]

Fig. 1. A thin film on a thick substrate (h<<H)

Q3.  A thin  film  of  material  (modulus  E,  Poisson’s  ratio  ν,  and  α  =  Coeff.  of  thermal
expansion) is bonded to a thick substrate (modulus Es, Poisson’s ratio νs, and αs = Coeff. of
thermal expansion) at temperature T0 as shown in Fig. 1. Assume elastic behaviour, and no
initial stresses post bonding at T0.

a) The temperature is then changed to T. Calculate the resultant stress state on the thin
film (assume very large interface area, estimate behaviour away from edges). [6]

b) If αs > α, and T > T0, and the bonding is very strong and uniform, what is the potential
failure mode of thin film away from edges. Briefly explain. [2]

c) If αs > α, and T < T0, and the bonding is  not very strong and uniform, what is the
potential failure mode of thin film away from edges. Briefly explain. [2]
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Q4. A helical spring shown in Fig. 2a has coil diameter as D, wire cross sectional area equal
to a circle of diameter d, and number of coils N. Assume linear elastic isotropic material
properties (Young’s modulus E, Poisson’s ratio ν). 

 
Fig. 2a. A helical spring    2b. A slinky toy         2c. A freely suspended slinky toy

a) What loading states: axial, bending, pure torsion, direct shear – are present on any vertical
cross-section of the coil wire, when an external load is applied at its free end? [1]

b) Which loading state will account for majority of the deflection of the spring? [1]

c) Considering only the major loading state (from (b)), and ignoring other loading states &
gravity, calculate the stiffness of the spring. [4]

d) A slinky toy (Fig 2b) is essentially a low stiffness helical spring using a thin cross section
wire (d) and large number (N) of coils (coil-diameter D). Assume the slinky (Fig 2c) is
suspended from one end under its own weight (Young’s modulus E, Poisson’s ration ν,
Density ρ), and achieves equilibrium (i.e. it  is not oscillating). Calculate the extended
length of the spring. Assume small strains. [4] 

Q5. A thin square plate containing a hole of radius a and subjected to equi-biaxial stress σ0 is
under static equilibrium as shown in Fig. 3. The hole centre coincides with the plate centroid
and compared to a, the plate dimensions are much bigger such that for all practical purposes
the plate can be regarded as an infinite plane. Assuming plate as linear elastic isotropic, use
the thick cylinder stress solution given below and compute the stress field in the plate. [6]

Stress field in a thick linear elastic, isotropic cylinder of inner radius  r1 and outer radius  r2

subjected to pressure p1, p2 respectively:
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Q6. Total potential energy Π of an elastic system is the sum of the stored strain energy Πs and
the potential energy of the external forces Πload. Principle of minimum potential energy states
that static equilibrium of an elastic body implies that the total potential energy  Π must be
minimum with regards to any kinematically admissible small variation in the displacement
field. Here kinematically admissible displacement field means a displacement field which is
single-valued, continuous and satisfies the displacement boundary conditions of the problem
under consideration. 

For a linear elastic homogeneous column of length L, bending stiffness EI clamped at one end
and subjected to axial load P at the free end (see Fig. 4a),  Π is given as,
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where v ( x ) is the horizontal (transverse) displacement of the column. The first term on the
R.H.S of Equation (3) is the stored strain energy while the second term is the potential energy
of the external force. Note that the integral in the second term is the vertical displacement (x-
component) of the free end.

(a)  Give  reason  why  v ( x )=C x2 ,  with  C being  an  undetermined  constant,  is  a

kinematically admissible displacement field for the column in Fig. 4a. [2]

(b) Use v ( x )  from (a) and compute Π. [2]

(c) Minimize Π with respect to C, apply Principle of minimum potential energy and compute
the critical load for buckling. [3]
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The same methodology (a-c) can be applied to compute the critical load for buckling due to
self-weight. Assume the column cross-section to be  A, mass density  ρ, acceleration due to
gravity g (see Fig. 4b).

(d) Modify Equation (3) if the column is stressed owing to self-weight instead of axial load P.
[2]

(c) Use approach of (a-c) to obtain the critical length for preventing buckling due to self-
weight. [5]

______________________________________
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