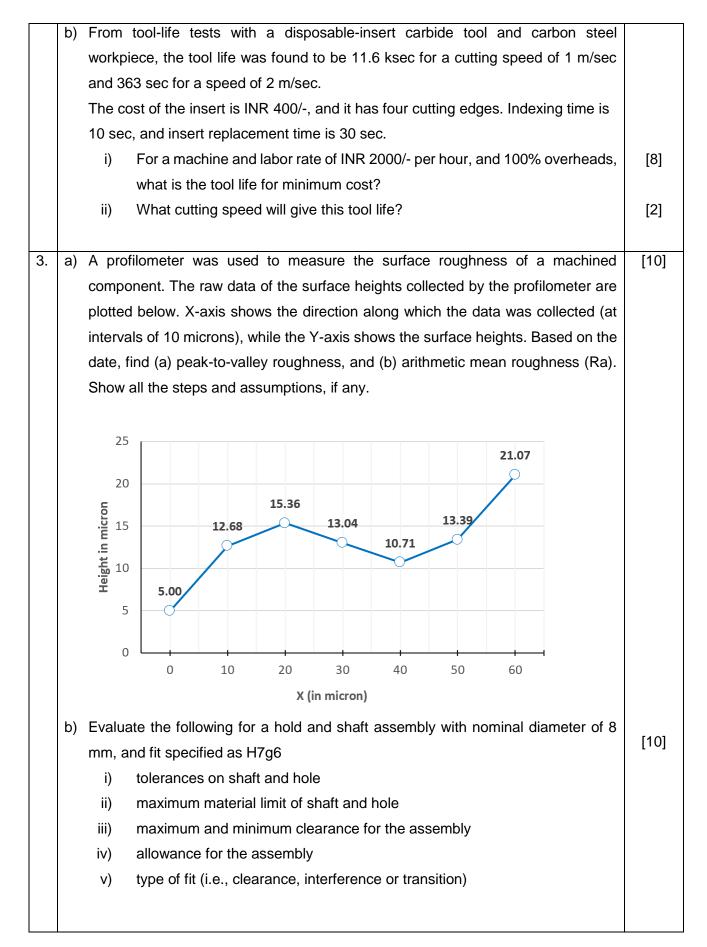
PhD Qualifying Exam – April 2020 Manufacturing Processes-II

Maximum marks: 100

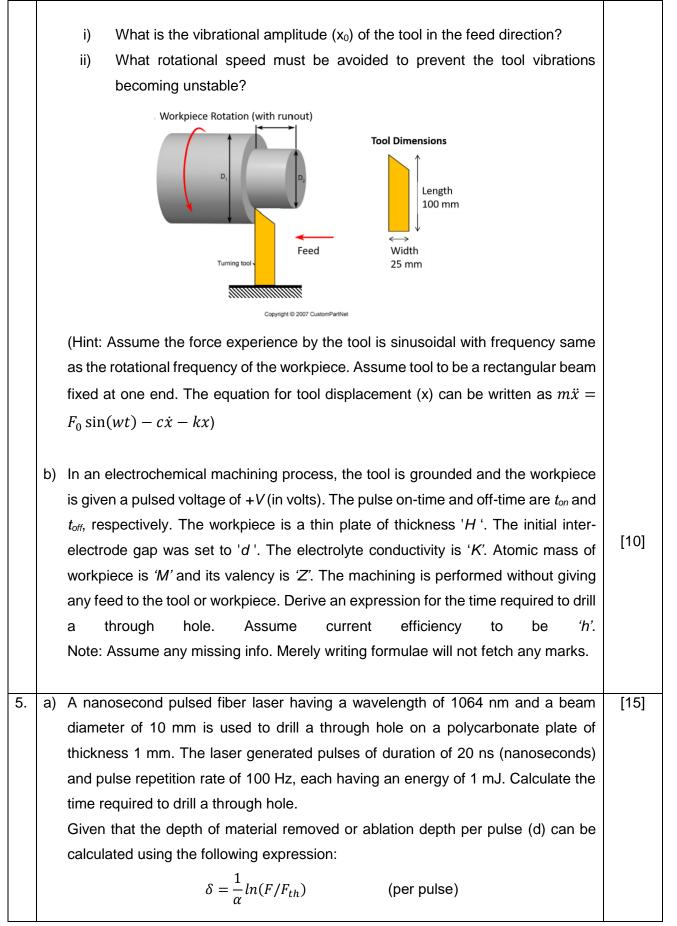
Time: 3 hours

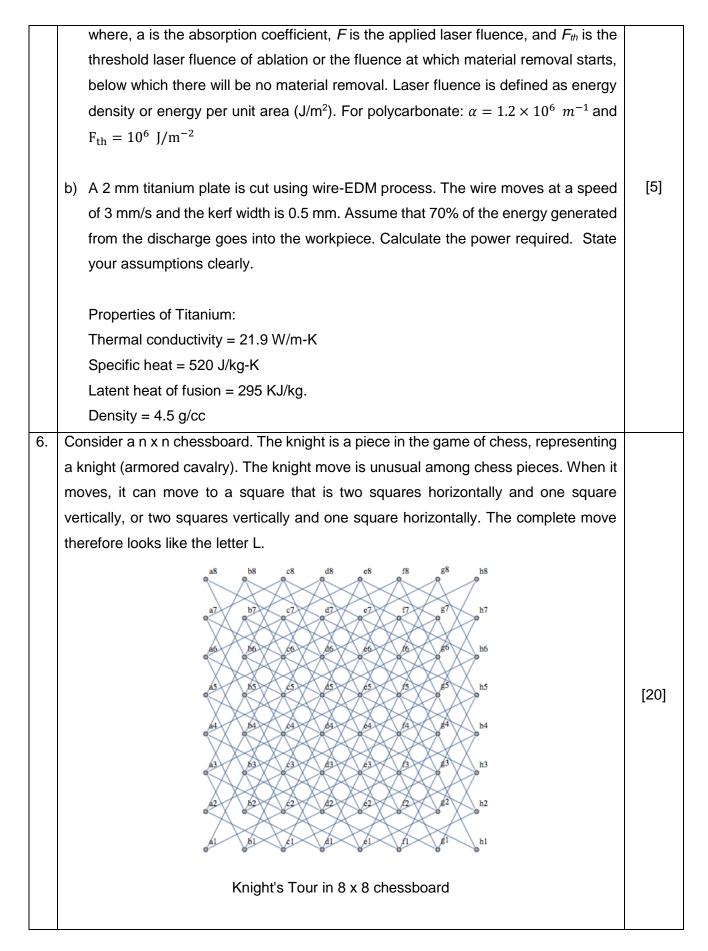
- This is an <u>Open Book</u> Examination. You are expected to follow the instructions provided to you meticulously and submit your answer book accordingly.
- Make suitable assumptions, if required and mention them.
- Answer any 5 questions.
- If you answer more than 5 questions, the best 5 answers (in terms of marks obtained) will be chosen for the final total.

1.	a)	A 1 m diameter disc having an 80 mm diameter hole in the center are to be faced	[12]
		on a vertical boring machine with a feed of 0.25 mm/rev and a back engagement	
		(depth of cut) of 5 mm. The machine has an automatic control device by which the	
		cutting speed is continuously adjusted to allow maximum power utilization at the	
		cutting tool of 3 kW. However the maximum rotational frequency of the spindle is	
		limited to 42 rev/min. If the specific cutting energy for the work material is 2.27	
		GJ/m3 and it takes 600 sec to unload a machined disc, load an un-machined disc	
		and return the tool to the beginning of the cut. Calculate the total time for machining	
		the disc in kiloseconds (ksec).	
	b)	Show that for orthogonal cutting with a zero rake angle tool ($\alpha = 0^{o}$), the rate of	[8]
		heat generation P_s in the shear zone is given by	
		$P_s = F_c V (1 - \mu r)$	
		Assume all the workdone in the shear plane contributes to heat generation.	
		(F_c = Cutting force, V = Cutting velocity, μ = coefficient of friction, r = chip thickness	
		ratio) <u>Show all the steps.</u>	
2.	a)	Assume that in orthogonal cutting operation, the frictional force, F is given by $F =$	[10]
		$K\tau_s A_0$ where K is a constant, τ_s is the material shear strength and A_0 can be either	
		(a) uncut chip area; (b) cut chip area. If the rake angle is α and the shear angle is	
		ϕ , prove that the average coefficient of friction, μ for:	
		If A_0 = cut chip area: $\mu = \frac{K\cos^2(\varphi - \alpha)}{1 + K\cos(\varphi - \alpha).\sin(\varphi - \alpha)}$	
L			



IT5	IT6	IT7	IT8	IT9	IT10	IT11	IT12	IT13	IT14	IT15	IT16	
7i	10i	16i	25i	40i	64i	100i	160i	250i	400i	640i	1000i	
D =	$D_{max} \times$	D_{mi}	n	i = 0	.453D	1/3 + 0	.001 <i>D</i>	(μm)	, w	here,	D is in	mm
Uppe	r deviati	ion (e	s)									
Shaft d	Shaft designation In µm (for D in mm)											
	$= -(265 + 1.3D)$ for $D \le 120$				20							
а												
			= -3.5D f	for D >	120							
		;	= −(140 + 0.85 <i>D</i>) for <i>D</i> ≤ 160									
b			= -1.8D									
			for $D > 1$									
с			= -52D ^{0.2}									
d			= -(95 + = -16D ^{0.4}		or <i>U</i> > 40	,						
e			= -11D ^{0.4}									
f		1	= -5.5D ⁰	.41								
g		3	= -2.5D ⁰	.34								
h			= 0									
Furning c	perati	on i	s carrie	ed ou	t usina	a soli	d HSS	tool o	f dime	nsion	s 100 n	1m x 25
nm x 25	•											
unout du	ie to v	whic	h the t	tool e	xnerie	ences	oeriod	ic force	e in fe	ed dir	ection	with an





	Knight's tour problem involves starting from a given square on a n x n chessboard and	
	traversing the entire chessboard in n*n moves such that the knight visits every square	
	exactly once and returns to the original starting position. A knight's tour is given in the	
	following for an 8 x 8 chessboard.	
	Formulate the Knight's Tour problem on an n x n chessboard as a linear (integer)	
	program. (Please clearly write all your parameters, decision variables, objective	
	function and constraints)	
7.	a)	
	Consider a time interval (a, b) such that the system starts empty and returns to empty.	
	Let $N_{a,b}$ be the number of jobs that arrive to the system during the interval (a, b).	
	Let T_i^a be the arrival time of the i^{th} job and $A(t)$, for $t \ge 0$, be the total number of arrivals	
	during the time interval [0,t]	
	Also let T_i^d be the departure time of the i^{th} job and $D(t)$, for $t \ge 0$, be the total number of	
	departures during the time interval [0,t].	
	Using the above terms, derive the Little's law	[5]
		[0]
	Also show how the Constant Work-In-Process (CONWIP) production control	
	mechanism can be implemented for a 3-station serial production line. Consider the	
	following for a steady state condition,	
	Arrival rate (λ) at machine 1 = 10 jobs/hr,	[5]
		[5]
	Average processing time for machine $1 = 4 \text{ min/job}$,	
	Average process time for machine $2 = 5.5 \text{ min/job}$,	
	Average process time for machine $3 = 4.5$ min/job.	
	b)	
	Consider a component that gets subjected to shock loading. Every time a shock	
	occurs, the amount of damage (wear) caused is a random variable that can be	
	assumed to have an exponential distribution with mean as 0.2 mm.	
	The time between arrivals of shocks is also a random variable and can be assumed to	
	have a Weibull distribution with shape parameter = 1.5 and scale parameter = 500 hr.	
	The component will have to be discarded if the number of shocks exceed 3 or the	
	cumulative wear exceeds 0.5 mm.	

First, explain the method and the theory behind random number generation using	
inverse transform and then simulate the arrival of shocks and wear of the component	[7]
over a period of 1500 hr for just one simulation run to determine if the component	
would fail during the run.	
If the time between arrivals and wear magnitude are both exponential, write the	[3]
analytical function to estimate the probability of survival till time 't'	

Paper Ends