Day: XXX
Date: XXX
Passing Marks: 30
Note: This is an open notes/books exam. There are SEVEN questions.

1. Consider the following system of first-order ODEs:
(10 marks)

$$
t \frac{d \mathbf{y}(t)}{d t}+\mathbf{A} \mathbf{y}=\mathbf{b}
$$

where

$$
\mathbf{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right]
$$

(a) Find the eigenvalues λ_{1}, λ_{2} and respective eigenvectors $\mathbf{e}_{1}, \mathbf{e}_{2}$ of \mathbf{A}.
(b) Assuming the form $\mathbf{y}(t)=\alpha_{1}(t) \mathbf{e}_{1}+\alpha_{2}(t) \mathbf{e}_{2}$, and $\mathbf{b}=\beta_{1} \mathbf{e}_{1}+\beta_{2} \mathbf{e}_{2}$, obtain uncoupled ODEs for $\alpha_{1}(t)$ and $\alpha_{2}(t)$.
(c) Using the initial conditions $y_{1}(1)=y_{2}(1)=1$, find the solutions $y_{1}(t)$ and $y_{2}(t)$ for $t>0$.
2. The temperature in a body is given by $T=x^{2}+x y+y z$. At the point $(2,1,4)$ what is the value of the derivative of the temperature (i) in the x direction, and (ii) in the direction of the vector $\hat{i}-2 \hat{j}+2 \hat{k}$? Also determine the direction in which the temperature is changing most rapidly at the point $(2,1,4)$. (5 marks)
3. Evaluate $\int_{A} \underline{\mathrm{u}} \cdot \hat{n} d A$ in two ways, if $\underline{\mathrm{u}}=x \hat{i}+x \hat{j}+z^{2} \hat{k}$ and A is the cylinder bounded by $z=0, z=8$ and $x^{2}+y^{2}=4$.
(5 marks)
4. Use the method of separation of variables to obtain the solution $u(x, t)$ of the partial differential equation
(10 marks)

$$
u_{t}=2 u_{x x}-u_{x}, \quad 0<x<1
$$

subject to the boundary conditions $u(0, t)=0, u(1, t)=0$ and initial condition $u(x, 0)=3 e^{x / 4} \sin (5 \pi x)$.
5. Use the appropriate Fourier transform to obtain the solution $u(x, t)$ of the initial value problem (Cauchy problem)
(10 marks)

$$
\begin{aligned}
u_{t} & =u_{x x}+2 u+\left(1-4 x^{2} t\right) e^{-x^{2}}, \quad-\infty<x<\infty, t>0 \\
u(x, t), u_{x}(x, t) & \rightarrow 0 \quad \text { as } \quad x \rightarrow \pm \infty, t>0 \\
u(x, 0) & =0, \quad-\infty<x<\infty
\end{aligned}
$$

6. When solving the problem of a vibrating string with variable density using the separation variations technique, one encounters the following eigenvalue problem
(10 marks)

$$
\frac{d^{2} X}{d x^{2}}+\frac{\lambda}{(1+x)^{2}} X=0, \quad 0<x<1
$$

with $X(0)=0$ and $X(1)=0$. Find the eigenvalues and the corresponding eigenfunctions.
7. Consider a case with an undamped spring mass system is subjected to different forcing functions in different time intervals. The governing equation of motion of such a system is given by

$$
\frac{d^{2} x}{d t^{2}}+x=f(t)
$$

where

$$
f(t)= \begin{cases}t, & 0 \leq t \leq \pi \\ \pi e^{\pi-t}, & t>\pi\end{cases}
$$

The initial conditions are $x(0)=0$ and $\frac{d x}{d t}(0)=1$. Find the displacement $x(t)$. Note that one needs to enforce the requirement that the displacement and the velocity is continuous at all time.

