Department of Mechanical Engineering, IIT Bombay

PhD Qualifier Exam: Applied Mathematics: 23 Jan 2019
Max. Marks: 60 Duration: 3 Hours Min. passing marks: 24
Closed notes / book exam; A list of common laplace transform pairs enclosed

1. $\left(5=2+3\right.$ points) Let W be the three dimensional region under the graph of $f(x, y)=e^{x^{2}+y^{2}}$ and over the region in the plane defined by $1 \leq x^{2}+y^{2} \leq 2$.
(a) Find the volume of W.
(b) Find the flux of the vector field $F=(2 x-x y) \hat{i}-y \hat{j}+y z \hat{k}$ out of the region W.
2. $\left(7=1+2+2+2\right.$ points) Let C be the curve $x^{2}+y^{2}=1$ lying in the plane $z=1$. Let $F=$ $(z-y) \hat{i}+y \hat{k}$.
(a) Calculate $\nabla \times F$.
(b) Calculate $\int_{C} F \cdot d s$ using a parametrization of C and a chosen orientation of C .
(c) Write $C=\partial S$ for a suitably chosen surface S and, applying Stokes' theorem. Verify your answer in (b).
(d) Consider the sphere with radius $\sqrt{2}$ with it's center at the origin. Let S^{\prime} be the part of the sphere that is above the curve (i.e., lies in the region $z \geq 1$), and has C as boundary. Evaluate the surface integral of $\nabla \times F$ over S^{\prime}. Specify the orientation you are using for S^{\prime} by drawing a figure.
3. (8 points) For the $2^{\text {nd }}$ order ODE, $\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0, y=x$ is the first solution. Find the second independent solution and verify by substitution.
4. (8 points) Consider a system of differential equations given below.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=3 x_{1}(t)+x_{2}(t)+x_{3}(t) \\
x_{2}^{\prime}(t)=2 x_{1}(t)+4 x_{2}(t)+2 x_{3}(t) \\
x_{3}^{\prime}(t)=-x_{1}(t)-x_{2}(t)+x_{3}(t)
\end{array}\right.
$$

where $x_{i}(t)$ is real-valued differentiable function of real variable t for all i. Determine all the solutions of the system of differential equations.
5. $(7=6+1$ points) Consider the following solution to one-dimensional wave equation: $y=A \cos (\omega t) \sin (k x)$
(a) Determine functions $f(t-x / c)$ and $g(t+x / c)$ such that their sum is equal to the expression given above. Here $k=\omega / c$.
(b) What is the physical significance of the two functions determined in (a)?
6. (7 points) The governing equation of a resistor-capacitor circuit subjected to a voltage $V(t)$ is given by $R \dot{q}+\frac{1}{C} q=V(t)$ where q is the electrical charge. Using Laplace transform method, determine the response of the circuit to a unit voltage impulse at $t=0$. Refer to the table at the end for additional information.
7. (6 points) Find the Fourier series for the impulse train shown in the figure below

Figure for question 7

Figure for question 8
8. $(12=4+4+4$ points $)$ In a piston oscillator, a piston of mass m is placed at the mid-point of a closed cylinder of cross-sectional area A and legth $2 L$ as shown in the figure (above). Assume that pressure p on either side of the piston satisfies $P V=$ constant (Boyle's law). Neglect the friction at the cylinder-piston contact surface. Let P_{0} be the pressure on both sides when $x=0$.
(a) If the piston is distrubed from its equilibrium position $x=0$, show that the governing equation of motion is

$$
m \ddot{x}+2 P_{0} A L\left(\frac{x}{L^{2}-x^{2}}\right)=0
$$

(b) Use Taylor series to expand the term $x /\left(L^{2}-x^{2}\right)$ about $x=0$ (equilibrium position) and retain only the leading term to derive the linearized version of the equation of motion: $m \ddot{x}+2 P_{0} A x / L=0$
(c) Determine the frequency of oscillation of the linearized system.

