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Department of Mechanical Engineering, IIT Bombay 
Ph.D. Qualifying Examination: Fluid Mechanics (TFE-1) 

Maximum marks: 100                      1 August, 2022                      Time: 14:30-17:30  

Instructions  
1. All questions are compulsory. 
2. Make suitable assumptions, if necessary, and state them clearly. 
3. Please provide figures wherever necessary. 
4. Please start each question in a separate page. 
5. Please do not skip steps. Please put all the steps in arriving at the answer for the given problem.  
6. Duration of the exam is three hours. 
7. Maximum marks is 100.  Pass marks for this question paper is 40.   
8. This is a closed book, closed-notes examination. All the information required is provided either in the 

questions or in the Appendix. 
9. Calculator is allowed. 

Problem 1: [17 marks]  

1. Consider turbulent flow of an incompressible fluid past a flat plate as shown in the figure below.   

  

The boundary layer velocity is assumed to be  
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This is a reasonable approximation of experimentally observed profiles.  Assume that the shear stress agrees 
with the experimentally determined relation  
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Determine the following parameters in terms of Reynolds number 
a) Boundary layer thickness (𝛿)         
b) Displacement thickness (𝛿A)                   
c) Momentum thickness (𝛿;)   
d) Skin friction coefficient (𝐶CD)	 
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Von Karman Integral Momentum equation 
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Problem 2: [16 marks]  

Consider steady, incompressible, laminar fully developed flow between two fixed parallel plates.   

 
Starting from the continuity and momentum equations in the differential form, derive the relations for the 
following parameters 
a) velocity profile in terms of centre line velocity and distance between the plates (h)   
b) Average velocity in terms of centre line velocity  
c) Shear stress distribution on either of the walls in terms of average velocity, dynamic viscosity and 

distance between the plates (h) 
d) Pressure drop over a length L in terms of dynamic viscosity, average velocity, length L and distance 

between the plates (h). 
e) Skin friction coefficient in terms of Reynolds number based on distance between the plates (h) as the 

characteristic length 
 

Problem 3: [16 marks]  

a) Consider the surface flow of a river near a bend that may be assumed to be described by the streamfunction 
, where is a positive constant.  The temperature at any point (x, y) on the surface is described by 

 for y > 0 and  is also a constant. 

i) Sketch the flow for  x, y > 0. In your sketch also draw the lines of constant pressure.        [5]                                                                                              
ii) Determine whether the temperature of a fluid element/particle will change with time.     [2] 
iii) In the Lagrangian description, a particle’s position  at time t can be described in terms of 
the position at t = 0. For this flow, find  as a function of and t.                          [4]                                                                                                                               
iv) Find T as function of . Comment on your answer in (ii).                                     [2]                                                                                                                         

b) According to your understanding of Eulerian and Lagrangian approaches in fluid mechanics, which of the 
two approaches is more suitable to study 

i) the flow of blood in human artery 
ii) the flow in the ionosphere (the topmost layer of the Earth’s atmosphere).  

Answer in brief with appropriate reasoning.                                                                             [3]                              
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Problem 4: [18 marks]  

An incompressible fluid with velocity V1 and density ρ approaches a row of long, horizontal, flat plates as 
shown in the figure below. The flat plates may be assumed to have zero thickness and are spaced at a distance 
w apart at an angle β to the incoming flow direction. Between each adjacent pair of blades there is a steady 
region of separated flow within which there is negligible velocity. Thus, the flow area is reduced causing the 
incoming flow to form a “free-stream jet” between the plates.  Towards the end of the plates, the free-stream 
jet is parallel and occupies a fraction 1/b of the geometrical area between the adjacent plates.  
 
a) Explain why, towards the end of the plates, the pressure  in the free-stream jet and the pressure in the 

separated region are nearly the same.                                                                          [2] 
b) Find the velocity within the free-stream jet, Vj, in terms of the given parameters.           [3] 
c) If  is the pressure in the incoming flow, find the pressure in terms of  , ρ, b, w, V1 , β.  Choose an 

appropriate control volume. Ignore the shear stress on the plates and assume the flow to be steady. Clearly 
mention all the assumptions necessary to solve this problem.                  [6] 
d) In this problem, can the Bernoulli’s equation be applied  

i) along a streamline between the incoming flow into the free-stream jet?  
ii) on the boundary between the separated flow and the free-stream jet (shown in dashed lines)?  

Explain with reasoning.                                                                                                       [4] 
 e) Far downstream of the row of the plates, the free-stream jets and the wakes formed by the separated regions 
mix to form a uniform flow. Calculate the flow angle far downstream of the row of flat plates. [3]  
                                                                                                           

 

 
 
Problem 5: [17 marks]  Inviscid and viscous flow across a circular cylinder: 
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a) Consider 2D inviscid flow across a cylinder, obtained by a superposition of the uniform flow and 
doublet, with the complex potential = 𝑢"𝑧 + 	𝜇/𝑧	 =	𝑢"(𝑧 +	𝑎;/𝑧	). Derive an expression for 
the non-dimensional pressure distribution, 𝐶N = (𝑝 − 𝑝")/0.5𝜌𝑢";  on the surface of a cylinder as 
a function of θ.             [7] 

b) Draw the variation of the non-dimensional pressure distribution, Cp, along the surface of a cylinder 
(as a function of θ) for (a) inviscid-flow, and (b) viscous laminar flow (at a Reynolds number 
Re=100).            [4] 

c) What is the fluid dynamics phenomenon which leads to the difference in the result (Cp as a function 
of θ) for the inviscid and viscous flow? Also, present the necessary and sufficient conditions for the 
occurrence of the flow phenomenon.       [3] 

d) Finally, present a comparative discussion on the drag and lift forces acting on the cylinder—for the 
inviscid flow as compared to viscous flow.        [3] 

Problem 6: [16 marks]  Vorticity and Interaction of Vortices: 

a) Take a 2D Cartesian (x-y) element or control volume (CV) of fluid of dimension Dx and Dy. Then, 
evaluate the right-hand side of the Stokes’s theorem ∫𝝎RRR⃗ ∙ 𝑑𝑨RR⃗ = ∮𝒖RR⃗ ∙ 𝑑𝒔R⃗ , where s is the direction 
tangential to a surface of the CV. Finally, derive the expression for the vorticity wz in the z-direction. 
Here,  ∫𝝎RRR⃗ ∙ 𝑑𝑨	RRR⃗   = 𝜔Z∆𝑥∆𝑦	 and consider u and v as the velocity in the x, y directions, respectively. 
           [6] 

b) For a 2D free-stream flow (with a horizontal velocity u=1 m/s and v=0) across a cylinder of diameter 
D, the figure below shows vortex shedding phenomenon for two-cases: case (a) and case (b) for the 
forward and reverse von Karman vortex street, respectively. For the case (a), the figure shows a 
top-row of clockwise (CW) and bottom-row of counter-clockwise (CCW) vortices; vice-versa for 
the case (b).  Note that the strength of the shed-vortices reduces as they move downstream 
Considering the u-velocity induced by the interaction of counter-rotating vortices for both the cases, 
present as follows: 
i. Draw an arrow-based direction of the induced u-velocity, in-between the counter-rotating 

vortices; separately for the two cases.              [4] 
ii. Draw a schematic-representation of the qualitative trend of variation of streamwise u-velocity as 

a function of y-coordinate (along the dashed lines in the figure, varying from 3D above and 3D 
below the horizontal centreline of the cylinder)  at a horizontal distance D, 2D, and 3D behind 
the cylinder. Draw the three u-velocity profiles for both the cases separately, and discuss the 
characteristics of resulting velocity profiles behind the cylinder.     [6] 
 

 

 
APPENDIX: 

Conservation Equation in Integral Form  
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where (i) V and A are the control volume and control surface, respectively (ii) ϕ = 1 and S = 0 for the 
conservation of mass, (iii) ϕ = u and S = F for the conservation of momentum, F being the net force acting on 
the control volume. 

Mass conservation  

    

 
Momentum conservation (incompressible) 

x direction –  

y direction –  

z direction –  
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