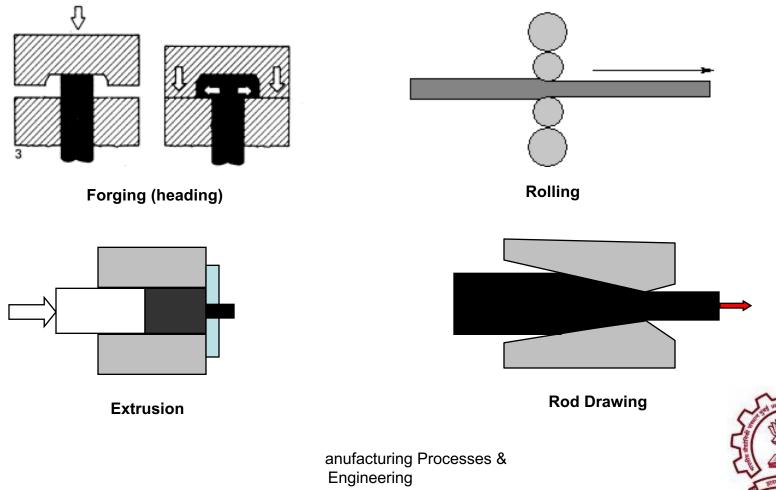
Bulk Deformation - 1

ME 206 Manufacturing Processes 1

Outline

- What is bulk deformation?
- Cold vs hot working
- Forging introduction
- Forging analysis
- Forging defects


What is bulk deformation?

- <u>Bulk deformation (or forming)</u>: processes characterized by large amount of plastic deformation (large strains) carried out at elevated or room temperature
- Bulk plastic flow of material under uniaxial or multi-axial stresses dominated by compression
- Mass conserving processes → volume is constant

Bulk Deformation Processes

• Examples include: forging, rolling, extrusion, rod drawing etc.

Instructor: Ramesh Singh Notes by Prof.

Cold vs Hot Working

- Many bulk deformation processes carried out at elevated temperatures
- Cold working: $T < 0.3T_m$
 - Usually a finishing step
- Warm working: $T = 0.3 \sim 0.5 T_m$
 - Intermediate or final step
- Hot working: $T > 0.5T_m$
 - Initial step

Cold Working

Advantages

- Better dimensional control
- Superior surface finish
- Strain hardening of surface layer can be beneficial
- Limitations
 - Greater material strength \rightarrow higher forces
 - Stronger tooling required
 - Lower ductility \rightarrow small deformations
 - Lower malleability \rightarrow harder to shape material
 - Anisotropic surface properties

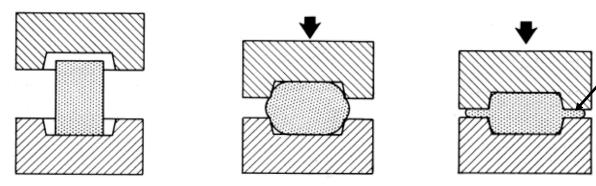
Hot Working

Advantages

- Lower yield strength \rightarrow lower forces
- High ductility \rightarrow larger strains possible
- Higher malleability \rightarrow easy to shape metal

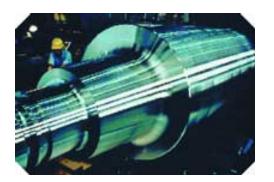
Limitations

- Easily forms oxide layers (scales) on surface → poor surface finish
- Harder to control dimensions



Forging

- Shape change via compressive forces
- Types of forging processes
 - Open die forging (upsetting)


- Closed or impression die forging

flash

Open Die Forging

- Carried out between flat dies
- Parts weighing few lbs ~ 150 tons e.g. solid shafts, spindles/rotors, rings, etc.
- Often carried out in steps
- Wide range of ferrous and non-ferrous metals

Stepped shaft

Spindles

Closed Die Forging

- Carried out between shaped dies
- Parts weighing few ounces ~ 25 tons e.g. crankshafts,connecting rods, aircraft parts etc.
- Most engineering metals: carbon steels, stainless steels, aluminum, bronze, etc.

Connecting rods

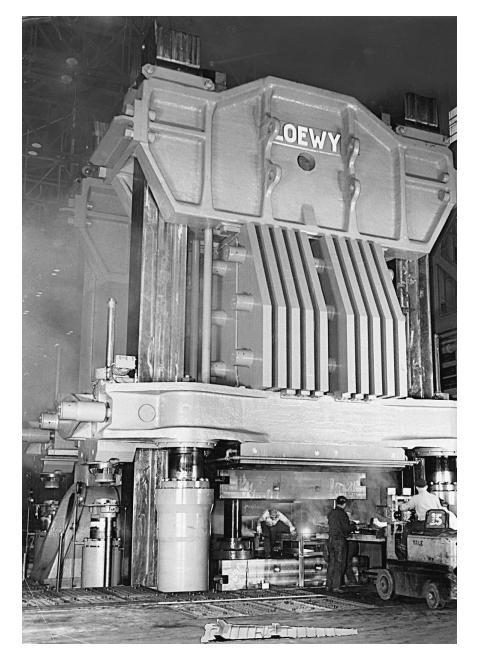
Aircraft bulkhead

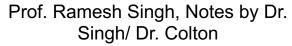
Forgings

- Coins
- Landing gear
- Crank shafts
- Turbine shafts

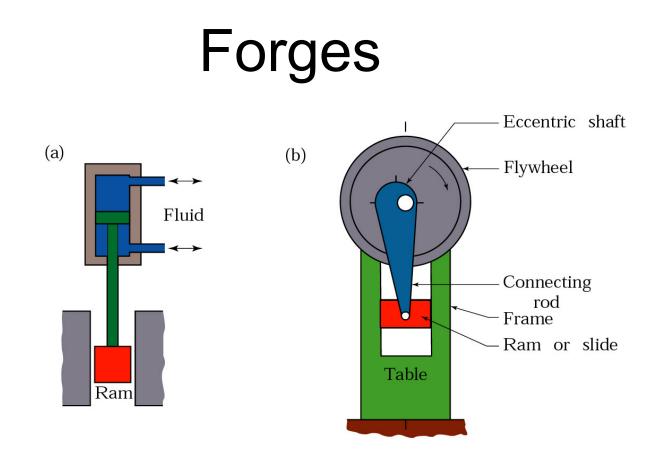
Forging presses

- Large machines
 - hold dies
 - form parts

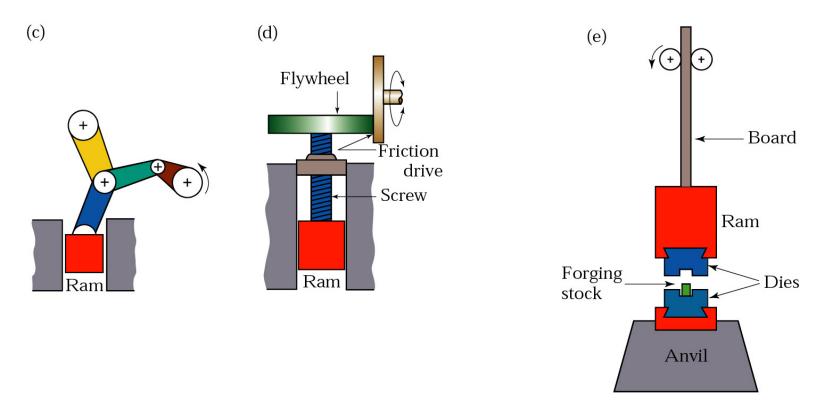



Press types

- Servo-hydraulic presses
- Servo-electrical presses
- Mechanical presses
- Screw presses
- Hammers
 - gravity drop
 - power drop
 - counter blow (two rams)
 - high pressure gas



50,000 ton press



Schematic illustration of the principles of various forging machines. (a) Hydraulic press. (b) Mechanical press with an eccentric drive; the eccentric shaft can be replaced by a crankshaft to give the up-and-down motion to the ram. (continued)

Forges

Schematic illustration of the principles of various forging machines. (c) Knuckle-joint press. (d) Screw press. (e) Gravity drop hammer.

Forging steps

- Prepare slug
 - saw
 - flame cut
 - shear
- Clean slug surfaces
 - shot blast
 - flame

Forging steps

- For hot forging
 - heat up and descale forging
 - make sure press is hot
- Lubricate
 - oil
 - soap
 - $-MoS_2$
 - glass
 - graphite

Lubrication purposes

- Reduce friction
- Reduce die wear
- Thermally insulate part
 - to keep it warm

Forging steps

- Forge
- Remove flash
 - trim
 - machine
- Check dimensions
- Post processing, if necessary
 - heat treat
 - machine

Effect on grain structure

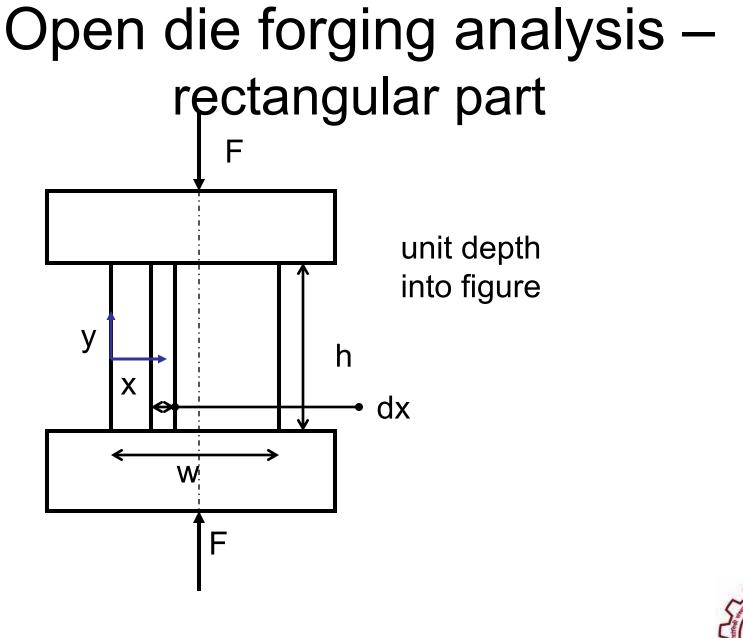
- Large grains are broken up.
- Grains can be made to flow.

Dies

- Final part shape determined by die accuracy
- Multiple parts can be made in one die
- Progressive shaping can be done in one die set
- Need to be stronger than highest forging stress

Forging Analysis

• Simple stress analysis possible for open die forging process


- Analysis method called "slab" analysis
- Applicable to plane strain compression with low sliding friction

Slab analysis assumptions

- Entire forging is plastic
 - no elasticity
- Material is perfectly plastic
 - strain hardening and strain rate effects later
- Friction coefficient (μ) is constant
 - all sliding, to start
- Plane strain
 - no z-direction deformation
- In any thin slab, stresses are uniform
- Three conditions exist: All sliding; Slidingsticking transition and Fully sticking

Expanding the dx slice on LHS

р

 σ_x

 τ_{f}

 $\sigma_x + d\sigma_x$

 τ_{f}

D

• σ_x , $d\sigma_x$ from material on side

$$\tau_{\text{friction}} = \text{friction force} = \mu p$$

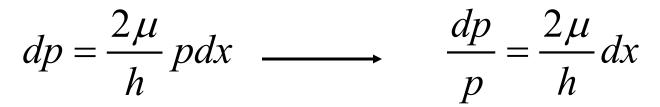
Force balance in x-direction

$$hd\sigma_{x} + 2\tau_{friction}dx = 0$$

$$d\sigma_{x} = -\frac{2\tau_{friction}}{h}dx$$
Mohr's circle
$$\sigma_{x} + p = 2k = \frac{2}{\sqrt{3}}\sigma_{flow} = 1.15 \cdot \sigma_{flow}$$

(distortion energy (von Mises) criterion, plane strain)

N.B. all done on a per unit depth basis



Force balance

Differentiating, and substituting into Mohr's circle equation

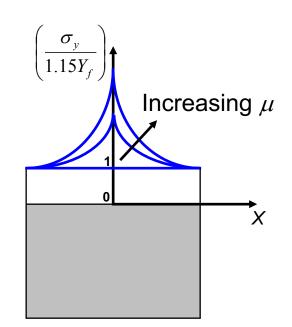
$$d(2k) = d(\sigma_x + p) \quad \therefore dp = -d\sigma_x$$
$$d\sigma_x = -\frac{2\tau_{friction}}{h} dx \quad \therefore dp = \left(\frac{2\tau_{friction}}{h}\right) dx$$

noting: $\tau_{\text{friction}} = \mu p$

Sliding region

$$\int_{2k}^{p_x} \frac{dp}{p} = \int_{0}^{x} \frac{2\mu}{h} dx$$

• Noting: @ x = 0, σ_x = 2k = 1.15 σ_{flow}



Forging pressure – sliding region

$$\ln p_x - \ln(2k) = 2\mu \frac{x}{h}$$

Sliding region result ($0 < x < x_k$)

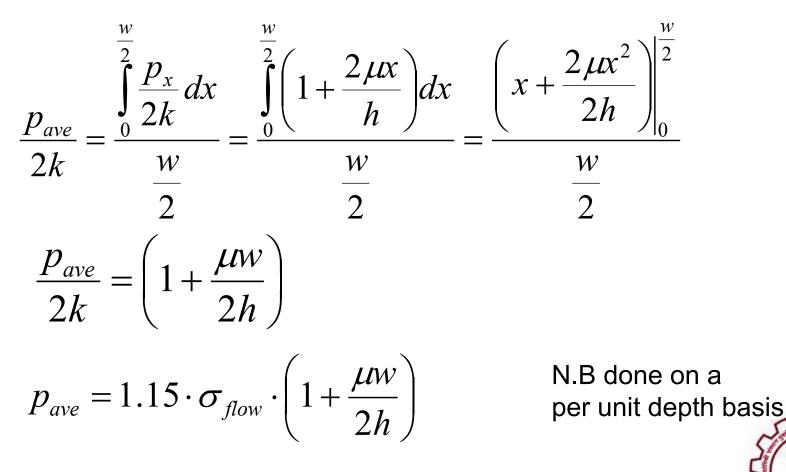
$$\frac{p_x}{2k} = \exp\left(\frac{2\mu x}{h}\right)$$
$$p_x = 1.15 \cdot \sigma_{flow} \cdot \exp\left(\frac{2\mu x}{h}\right)$$

N.B done on a per unit depth basis

Forging pressure – approximation

• Taking the first two terms of a Taylor's series expansion for the exponential about 0, for $|x| \le 1$

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} = \sum_{k=0}^n \frac{x^k}{k!}$$


yields

$$\frac{p_x}{2k} = \left(1 + \frac{2\mu x}{h}\right) \qquad p$$

$$p_x = 1.15 \cdot \sigma_{flow} \cdot \left(1 + \frac{2\mu x}{h}\right)$$

Average forging pressure – all sliding approximation

using the Taylor's series approximation

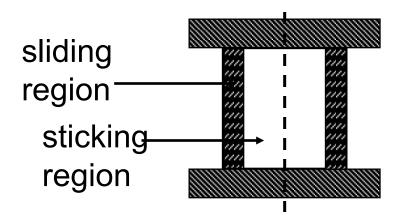
Forging force – all sliding approximation

 $F_{forging} = p_{ave} \cdot width \cdot depth$

$$F_{forging} = 1.15 \cdot \sigma_{flow} \cdot \left(1 + \frac{\mu w}{2h}\right) \cdot w \cdot depth$$

Example Problem

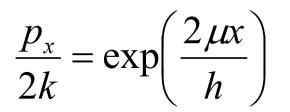
A rectangular workpiece has the following original dimensions: w = 100 mm, h = 25 mm,and depth d= 20 mm and is being open die forged in plane strain. The true stress-true strain curve of the metal is given by $\sigma_{r} = 400 \varepsilon_{r}^{0.5}$ MPa and the coefficient of friction is $\mu = 0.3$. Calculate the forging force required to reduce the height by 20%. Use both the "exact" and the average pressure methods.


> ME 4210: Manufacturing Processes & Engineering Instructor: Ramesh Singh Notes by Prof.

h

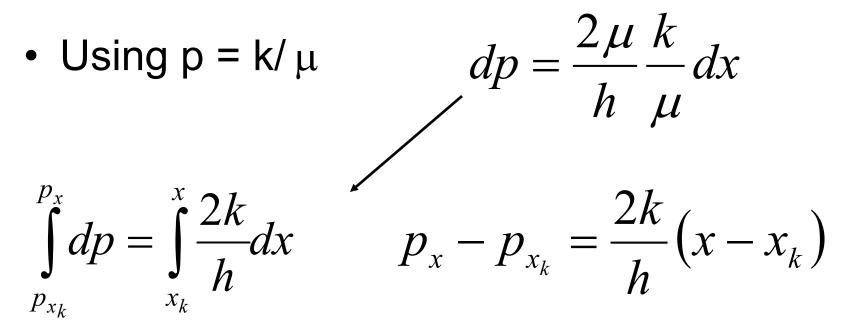
W

Slab - die interface


- Sliding if $\tau_{\rm f} < \tau_{\rm flow}$
- Sticking if $\tau_{f} \geq \tau_{flow}$
 - can't have a force on a material greater than its flow (yield) stress
 - deformation occurs in a sub-layer just within the material with stress τ_{flow}

Sliding / sticking transition

- Transition will occur at x_k
- using $k = \mu p$, in:


 $\frac{k}{2\mu k} = \exp\left(\frac{2\mu x_k}{h}\right)$

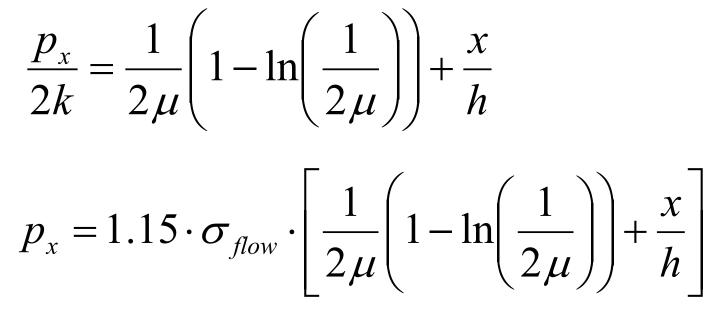
• hence:

$$\frac{x_k}{h} = \frac{1}{2\mu} \ln \frac{1}{2\mu}$$

Sticking region

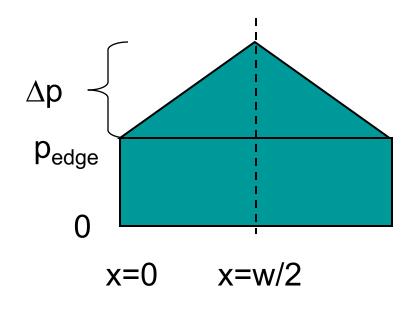
$$dp = \frac{2\mu}{h} p dx$$

Sticking region

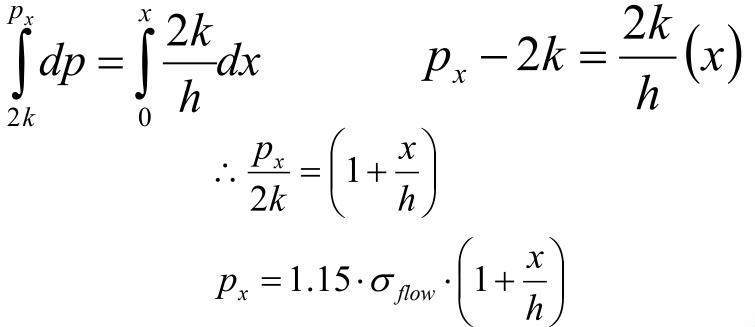

We know that

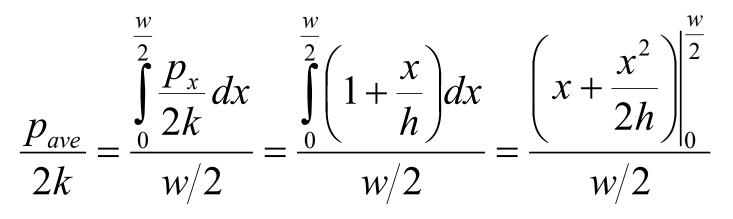
- at $x = x_k$, $p_{x_k} = k/\mu$
- and $\frac{x_k}{h} = \frac{1}{2\mu} \ln \frac{1}{2\mu}$

Forging pressure - sticking region


Combining (for $x_k < x < w/2$)

Forging pressure – all sticking approximation


 If x_k << w, we can assume all sticking, and approximate the total forging force per unit depth (into the figure) by:



Forging pressure – all sticking approximation

 $p_{edge} = 2k$

Average forging pressure – all sticking approximation

$$\frac{p_{ave}}{2k} = \left(1 + \frac{w}{4h}\right)$$

$$p_{ave} = 1.15 \cdot \sigma_{flow} \cdot \left(1 + \frac{w}{4h}\right)$$

$$F_{forging} = p_{ave} \cdot width \cdot depth$$

$$F_{forging} = 1.15 \cdot \sigma_{flow} \cdot \left(1 + \frac{w}{4h}\right) \cdot w \cdot depth$$

Sticking and sliding

- If you have both sticking and sliding, and you can't approximate by one or the other,
- Then you need to include both in your pressure and average pressure calculations.

$$F_{forging} = F_{sliding} + F_{sticking}$$

$$F_{forging} = (p_{ave} \cdot A)_{sliding} + (p_{ave} \cdot A)_{sticking}$$

Material Models

Strain hardening (cold – below recrystallization point)

$$\sigma_{flow} = Y = K\varepsilon^n$$

Strain rate effect (hot – above recrystallization point)

$$\sigma_{flow} = Y = C(\dot{\varepsilon})^m$$

 $\dot{\varepsilon} = \frac{1}{h} \frac{dh}{dt} = \frac{v}{h} = \frac{platen \ velocity}{instantaneous \ height}$

- Lead 25 mm x 25 mm x 900 mm _____900
- σ_y = 6.89 MPa
- $h_f = 6.25 \text{ mm}, \mu = 0.25$
- Show effect of friction on total forging force.
- Use the slab method.
- Assume it doesn't get wider in 900 mm direction.
- Assume cold forging.

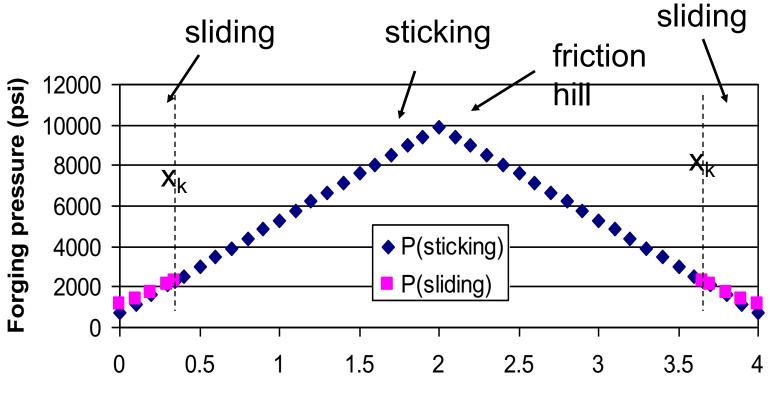
25

25

• At the end of forging:

 $h_f = 6.25 \text{ mm}, w_f = 100 \text{ (conservation of mass)}$

Sliding / sticking transition


$$\frac{x_k}{h} = \frac{1}{2\mu} \ln \frac{1}{2\mu}$$

• Sliding region:

$$p_x = 1.15 \cdot \sigma_{flow} \cdot \exp\left(\frac{2\mu x}{h_f}\right)$$

Distance from forging edge (in)

• Friction hill

 forging pressure must be large (8.7x) near the center of the forging to "push" the outer material away against friction

• Determine the forging force from:

$$Force = \iint p \cdot dA$$

• since we have plane strain

$$\frac{F}{unit\,depth} = \int_{0}^{x} p_{x} dx$$

 We must solve separately for the sliding and sticking regions

$$F_{forging} = 2\left(\left(\int_{0}^{x_{k}} p_{x} dx\right) depth\right)_{sliding} + 2\left(\left(\int_{x_{k}}^{w/2} p_{x} dx\right) depth\right)_{sticking}$$

or since the part is 36" deep: F(both) = 337 Tonnes

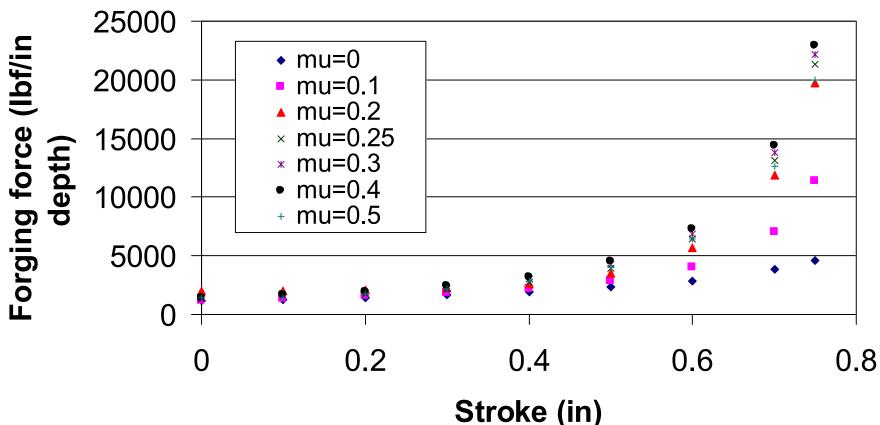
$$F_{forging} = 1.15 \cdot \sigma_{flow} \cdot \left(1 + \frac{w}{4h}\right) \cdot w \cdot depth$$

F(all sticking) = 363 tonnes

$$F_{forging} = 1.15 \cdot \sigma_{flow} \cdot \left(1 + \frac{\mu w}{2h}\right) \cdot w \cdot depth$$

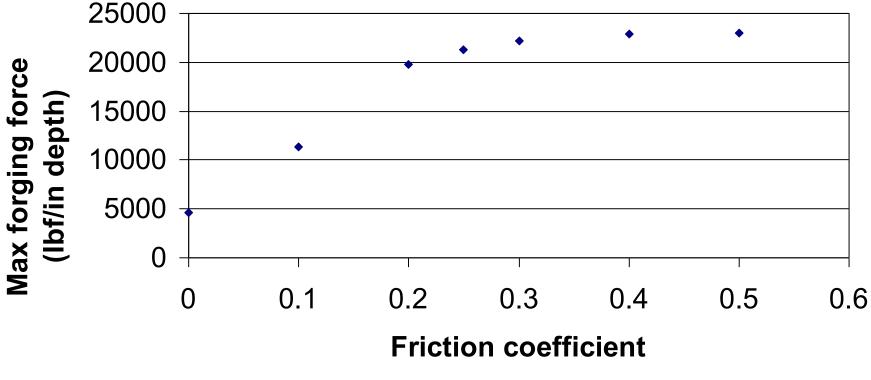
F(all sliding) = 496,800 lbs = 218 tons Can we use exact solution for this??? All sticking over-estimates actual value.

Forging – Effect of friction


• Effect of friction coefficient (μ) – all sticking

Friction coefficient	Fmax (lbf/in depth)	xk	Stick/slide
0	4600	2	slide
0.1	11365	2	slide
0.2	19735	0.573	both
0.25	21331	0.347	both
0.3	22182	0.213	both
0.4	22868	0.070	both
0.5	23000	0	stick

Friction is <u>very</u> important



Forging - Ex. 1-17 Forging force vs. stroke – all sticking

Forging - Ex. 1-19 Maximum forging force vs. friction coefficient (μ) all sticking

Deformation Work

In general, work done in bulk deformation processes has three components

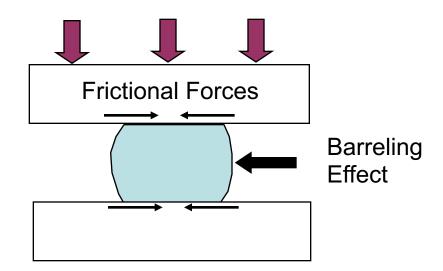
Total work, $W = W_{ideal} + W_{friction} + W_{redundant}$

Work of ideal plastic deformation, W_{ideal}

= (area under true stress-true strain curve)(volume)

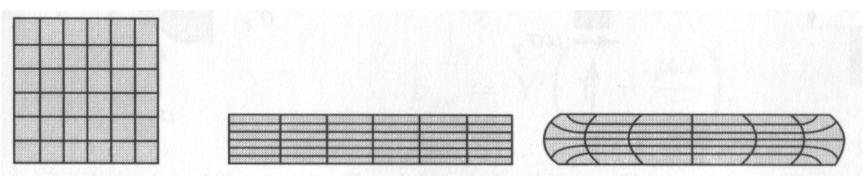
= (volume)
$$\left(\int_{0}^{\varepsilon_{t}} \sigma_{t} d\varepsilon_{t} \right)$$

For a true stress-true strain curve $\sigma_t = K \varepsilon_t^n$:


$$W_{ideal} = (\text{volume}) \left(\frac{K \varepsilon_t^{n+1}}{n+1} \right) = (\text{volume}) \overline{Y}_f \varepsilon_t$$

 $\overline{Y}_f = \text{Avg. flow stress}$

Deformation Work


Friction between dies and workpiece causes inhomogeneous (non-uniform) deformation called barreling

Deformation Work

Internal shearing of material requires redundant work to be expended

Ideal Deformation

Redundant Deformation

Redundant Zone

Closed/Impression Die Forging

- Analysis more complex due to large variation in strains in different parts of workpiece
- Approximate approaches
 - Divide forging into simple part shapes e.g. cylinders, slabs etc. that can be analyzed separately
 - Consider entire forging as a simplified shape

Closed/Impression Die Forging

Steps in latter analysis approach

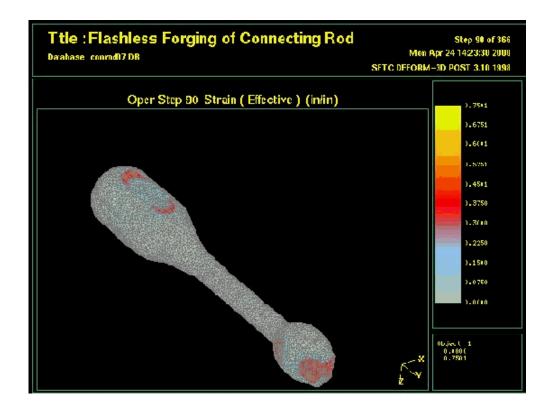
 Step 1: calculate average height from volume V and total projected area A_t of part (including flash area)

$$h_{avg} = \frac{V}{A_t} = \frac{V}{Lw}$$

Step 2:
$$\varepsilon_{avg} = \operatorname{avg.strain} = \ln\left(\frac{h_i}{h_{avg}}\right)$$
$$\dot{\varepsilon}_{avg} = \operatorname{avg.strain} \operatorname{rate} = \frac{V}{h_{avg}}$$

Closed/Impression Die Forging

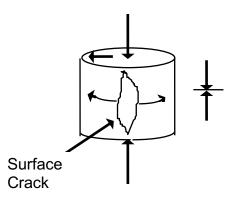
- Step 3: calculate flow stress of material Y_f for cold/hot working
- Step 4:


Avg. forging load =
$$F_{avg} = K_p Y_f A_t$$

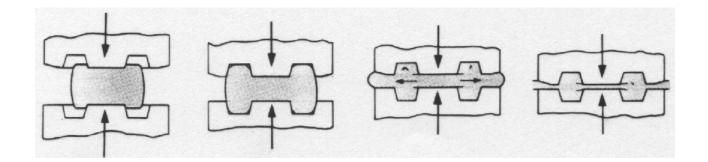
- K_p = pressure multiplying factor
 - = 3~5 for simple shapes without flash
 - = 5~8 for simple shapes with flash
 - = 8~12 for complex shapes with flash

Other Analysis Methods

 Complex closed die forging simulated using finite element software



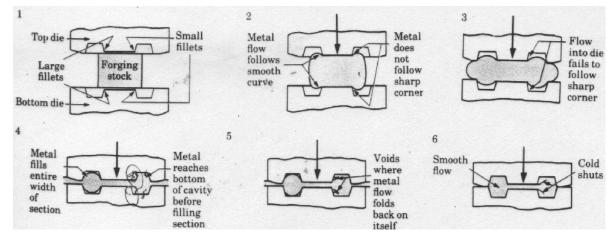
Source: http://nsmwww.eng.ohio-state.edu/html/f-flashlessforg.ht



Forging Defects

• Surface cracking due to tensile stresses

• Internal cracking in thick webs



Forging Defects

• Laps due to buckling of thin webs

• Cold shuts due to small radii fillets in die

Summary

- What is bulk deformation?
- Cold vs hot working
- Forging analysis
 Slab analysis
- Forging defects

