Metal Casting - 1
Outline

• Casting basics
• Patterns and molds
• Melting and pouring analysis
• Solidification analysis
• Casting defects and remedies
Casting Basics

• A casting is a metal object obtained by pouring molten metal into a mold and allowing it to solidify.
Casting: Brief History

- 3200 B.C. – Copper part (a frog!) cast in Mesopotamia. Oldest known casting in existence
- 233 B.C. – Cast iron plowshares (in China)
- 500 A.D. – Cast crucible steel (in India)
- 1642 A.D. – First American iron casting at Saugus Iron Works, Lynn, MA
- 1818 A.D. – First cast steel made in U.S. using crucible process
- 1919 A.D. – First electric arc furnace used in the U.S.
- Early 1970’s – Semi-solid metalworking process developed at MIT
- 1996 – Cast metal matrix composites first used in brake rotors of production automobile
Complex, 3-D shapes

- Near net shape
- Low scrap
- Relatively quick process
- Intricate shapes
- Large hollow shapes
- No limit to size
- Reasonable to good surface finish
Capabilities

• Dimensions
 – sand casting - as large as you like
 – small - 1 mm or so

• Tolerances
 – 0.005 in to 0.1 in

• Surface finish
 – die casting 8-16 micro-inches (1-3 \(\mu \)m)
 – sand casting - 500 micro-inches (2.5-25 \(\mu \)m)
Processes

- Sand
- Shell
- Plaster
- Ceramic
- Investment
- Lost foam
- Pressure
- Vacuum

- Die
- Centrifugal
- Squeeze
- Semi-solid
- Single crystal
- Directional solidification
- Slush
- Continuous
Metals processed by casting

- Sand casting – 60%
- Investment casting – 7%
- Die casting – 9%
- Permanent mold casting – 11%
- Centrifugal casting – 7%
- Shell mold casting – 6%
Casting: Basic Steps

• Basic steps in casting are:
 – Preparation of pattern(s), core(s) and mold(s)
 – Melting and pouring of liquefied metal
 – Solidification and cooling to room temperature
 – Removal of casting - shakeout
 – Inspection (for possible defects)
Pattern Making

- Pattern is a replica of the exterior surface of part to be cast – used to create the mold cavity
- Pattern materials – wood, metal, plaster
Pattern Making

• Pattern usually larger than cast part

Allowances made for:

– **Shrinkage**: to compensate for metal shrinkage during cooling from freezing to room temp

\[
\text{Shrinkage allowance} = \alpha L (T_f - T_0)
\]

expressed as *per unit length* for a given material

\[
\alpha = \text{coeff. of thermal expansion}, \ T_f = \text{freezing temp}
\]

\[
T_0 = \text{room temp}
\]

\[\text{e.g. Cast iron allowance} = 1/96 \text{ in./ft}
\]

\[\text{aluminum allowance} = 3/192 \text{ in./ft}\]
Pattern Making

• Pattern allowances made for:
 – *Machining*: excess dimension that is removed by machining; depends on part dimension and material to be cast

 e.g. cast iron, dimension 0-30 cm, allowance = 2.5 mm; aluminum, allowance = 1.5 mm

 – *Draft*: taper on side of pattern parallel to direction of extraction from mold; for ease of pattern extraction; typically 0.5~2 degrees
Mold Making: Sand Casting
Mold Making: Sand Casting

By V. Ryan

START

IN GATE

By V. Ryan

SPRUE PINS

By V. Ryan
Mold Making: Sand Casting

Casting video: http://www.designinsite.dk/htmsider/pb0211wmv.htm
Sand Casting

• Green sand mold:
sand + clay + water + additives

• Typical composition (by wt.):
 – 70-85% sand, 10-20% clay, 3-6% water, 1-6% additives

• Important properties of molding sand:
 – Strength
 – Permeability
 – Deformation
 – Flowability
 – Refractoriness
Melting

• For a pure metal:
 total heat energy required, \(H = \)
 energy to raise temp of metal to melting point, \(T_m \) + heat of fusion, \(H_f \) + energy to raise temp of liquid metal to pouring temp, \(T_p \)

\[
H = \rho V \left[c_s (T_m - T_0) + H_f + c_l (T_p - T_m) \right]
\]

• Heat required for alloys more complex
• Gas fired, electric arc and induction furnaces used to melt metal
Melting

- Solubility of gases (hydrogen and nitrogen) in molten metal an issue
- Solubility of H_2, S:

$$S = C \exp \left[-\frac{E_s}{(k \theta)} \right]$$

$E_s = \text{heat of solution of 1 mol of } \text{H}_2$

$\theta = \text{absolute temp, } C \text{ and } k \text{ are constants}$

e.g. 1 atm pressure, liquid solubility of H_2 in iron = 270 cc/kg; in aluminum = 7 cc/kg
Melting Furnaces

Induction Heating
Pouring

- An important step in casting since it impacts mold filling ability and casting defects
Pouring

- Key aspects of pouring
 - Pouring rate
 - Too slow → metal freezes before complete mold filling
 - Too fast → inclusion of slag, aspiration of gas, etc.
 - Reynolds number: Laminar versus turbulent flow

\[\text{Re} = \frac{\rho V D}{\eta} \]

- Most steels reach mildly turbulent flow conditions easily (Re > 3500)

- Superheat ~ \((T_p - T_m)\); \(T_p\) = pouring temp
 - Too high → increased gas solubility → porosity problems
Pouring Analysis (Sprue/Gating Design)

• Fluid flow in sprue/gating/mold can be analyzed using energy balance i.e. Bernoulli’s theorem

\[
h_1 + \frac{V_1^2}{2g} + \frac{P_1}{\rho g} + F = \text{const}.
\]

• Assumptions of analysis
 – Incompressible fluid
 – Negligible frictional losses
 – Entire mold is at atmospheric pressure
Pouring Analysis (Sprue/Gating Design)

- Design of sprue and gating system (runners + gates) based on Bernoulli’s theorem
Pouring Analysis (Sprue/Gating Design)

• Applying energy balance between points 1 and 3

\[h_1 + \frac{V_1^2}{2g} + \frac{P_1}{\rho g} = h_3 + \frac{V_3^2}{2g} + \frac{P_3}{\rho g} \]

Assuming entire mold is at atmospheric pressure and velocity of melt at point 1 ~ 0

\[V_3 \approx \sqrt{2gh_t} \]
Pouring Analysis (Sprue Design)

• Consider the geometry of freely falling liquid from the pouring basin; also assume permeable walls (e.g. sand mold)

\[V_2 \approx \sqrt{2gh_a} \quad V_3 \approx \sqrt{2gh_t} \]

• Assuming continuity of fluid flow, flow rate at point 2 = flow rate at point 3:

\[A_2 V_2 = A_3 V_3 \quad \Rightarrow \quad \frac{A_3}{A_2} = \frac{V_2}{V_3} = \sqrt{\frac{h_a}{h_t}} \]
Pouring Analysis (Sprue Design)

• Result suggests a parabolic shape for sprue

\[
\frac{A_3}{A_2} = \sqrt{\frac{h_a}{h_t}}
\]

• A straight sprue can lead to aspiration of gases from the mold (for a permeable mold) into the molten metal → porous castings
Pouring Analysis (Sprue/Gating Design)

- As metal is poured into mold, the effective “head” decreases.

- Velocity of metal at point 3:

\[V_3 \approx \sqrt{2g(h_t - h)} \]

Bottom Gated Mold
Mold Filling Analysis

- **Bottom gated mold**: In time dt increase in volume of metal in mold = $A_m dh$, where $A_m =$ cross-section of the mold cavity

- Volumetric flow rate of metal delivered to mold at point 3 (gate) = $A_3 V_3$

- Volume balance at point 3:

\[
A_m dh = A_3 \sqrt{2g(h_t - h)}
\]

- Mold filling time, t_f

\[
\frac{1}{\sqrt{2g}} \int_0^{h_m} \frac{dh}{\sqrt{h_t - h}} = \frac{A_3}{A_m} \int_0^{t_f} dt \Rightarrow t_f = \frac{2 A_m}{A_3 \sqrt{2g}} \left(\sqrt{h_t} - \sqrt{h_t - h_m} \right)
\]
Mold Filling Analysis

- Mold filling time, t_f

\[
\frac{1}{\sqrt{2g}} \int_0^{h_m} \frac{dh}{\sqrt{h_t-h}} = \frac{A_3}{A_m} \int_0^{t_f} dt \Rightarrow t_f = \frac{2A_m}{A_3 \sqrt{2g}} \left(\sqrt{h_t} - \sqrt{h_t-h_m} \right)
\]

- Mold filling time for top gated mold

\[
t_f = \frac{\text{Mold Volume}}{\text{Flow Rate}} = \frac{A_m h_m}{A_g V_g}
\]

- Above calculations represent the minimum time necessary
Example Problem 1

Given a top gated mold with the following:

Sprue height, \(h_t = 20 \text{ cm} \)

Cross-section of sprue base, \(A_3 = 2.5 \text{ cm}^2 \)

Volume of mold cavity, \(V = 1560 \text{ cm}^3 \)

Find:

a) Flow velocity at sprue base
b) Flow rate of metal into mold cavity
c) Mold filling time
Example Problem 1 (contd)

Solution:

a) Velocity at sprue base

\[V_3 = \sqrt{2gh_t} = \sqrt{2(981)(20)} = 198.1 \text{ cm/s} \]

b) Flow rate, \(Q = A_3V_3 = (2.5)(198.1) = 495 \text{ cm}^3/\text{s} \)

c) Mold filling time

\[t_f = \frac{1560}{495} = 3.2 \text{ s} \]
Example Problem 2

• Consider the sand mold shown below. You wish to pour molten iron so that the flow into the mold cavity is not very turbulent. Determine the diameter of the date for the given problem data.
Data for problem:

• Iron data:
 - density = 7860 kg/m³
 - viscosity at pouring temp. = 2.25 x 10⁻³ N.s/m²

• Sprue height (including pouring cup) = 2 in. or 0.051 m

• Assume that the runners and gates are uniform in cross-section; ignore riser
Solidification

- Pure metals
 - Solidify at approx. constant temperature
 - Initiation of solidification requires undercooling
Solidification

- **Alloys**
 - Solidify over a temperature range
 - Composition and microstructure determined by phase diagram of alloy

Binary Phase Diagram

ME 206: Manufacturing Processes & Engineering
Instructor: Ramesh Singh; Notes by: Prof. S.N. Melkote / Dr. Colton
Shrinkage

- Shrinkage: most metals shrink when cooled from the liquid state
 - Liquid shrinkage
 - Solidification shrinkage
 - Solid shrinkage
Heat Transfer During Solidification

- Casting: non-steady state heat flow
- Consider the 1-d solidification of a pure metal
Heat Transfer Analysis: Insulating Molds

• Insulating mold example: sand mold
• Solidification rate for such molds depends primarily on the thermal properties of the mold
• Assumptions of analysis:
 – One dimensional heat transfer
 – Uniform thickness of solidified metal
 – No thermal resistance at mold-metal interface
 – No temperature gradient within solid and liquid metal
 – Mold is semi-infinite in size
 – Mold thermal properties are uniform
 – Zero superheat
 – Pure metal
Heat Transfer Analysis: Insulating Molds

- Implications of assumptions on instantaneous temperature distribution across mold

![Diagram of heat transfer analysis with labels for Air, Solid, Liquid, Latent heat of fusion, and Specific heat. Temperature axis with points T_0 and T_m, and Distance axis with $x = 0$.]
Heat Transfer Analysis: Insulating Molds

• Governing equation of transient heat transfer:

\[
\frac{\partial T}{\partial t} = \alpha_m \frac{\partial^2 T}{\partial x^2}
\] \hspace{1cm} (1)

\[\alpha_m = \text{thermal diffusivity of mold} = \frac{k_m}{(\rho_m c_m)} \]

\[k_m = \text{thermal conductivity of mold} \]

\[c_m = \text{specific heat of mold} \]

\[\rho_m = \text{density of mold} \]

• For the assumed boundary conditions, the general solution to (1) is:

\[
\frac{T - T_m}{T_0 - T_m} = \text{erf} \left(\frac{-x}{2\sqrt{\alpha_m t}} \right)
\] \hspace{1cm} (2)

where \(\text{erf}() \) = Gaussian error function

• Note that Eq. (2) can be differentiated to obtain temperature gradient within the mold
Insulating mold

Solution to 1D heat conduction eqn

\[T(x, t) = T_m + (T_o - T_m) \cdot erf \left(\frac{-x}{2\sqrt{\alpha_m t}} \right) \] \hspace{1cm} (3)

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-z^2) \, dz = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{3 \cdot 1!} + \frac{x^5}{5 \cdot 2!} + \frac{x^7}{7 \cdot 3!} + \ldots \right) \]

differentiating to obtain the temperature gradient

\[\frac{\partial T}{\partial x} = \frac{T_m - T_0}{\sqrt{\pi \alpha_m t}} \exp \left(\frac{-x^2}{4\alpha_m t} \right) \] \hspace{1cm} (4)
Heat Transfer Analysis: Insulating Molds

- Quantity of practical interest: solidification time
- Can be obtained from energy balance at mold-solid interface
- Rate of heat flow into mold at mold-solid interface:

\[
\dot{Q} \bigg|_{x=0} = -k_m A \frac{\partial T}{\partial x} \bigg|_{x=0} \tag{5}
\]

where \(A \) = area of mold-metal interface

\[
\dot{Q} \bigg|_{x=0} = -A \sqrt{\frac{k_m \rho_m c_m}{\pi t}} \left(T_m - T_0 \right) \tag{6}
\]
Insulating mold

if the metal is cast at its melting temperature, then the heat entering the mold is the latent heat of fusion

\[
\frac{dQ}{dt} = \rho_{\text{casting}} \Delta H_f \frac{dV}{dt} = \rho_{\text{casting}} \Delta H_f A \frac{dS}{dt}
\]

(7)

- \(\Delta H_f\) = latent heat of fusion
- \(V\) = volume of solidified metal
- \(A\) = area of mold-metal interface
- \(S\) = thickness of solidified metal (x)
Insulating mold

- Corresponding heat flux

\[
\left(\frac{q}{A} \right)_{\text{casting}} = \rho_{\text{casting}} \Delta H_f \frac{dS}{dt} \tag{8}
\]
Insulating mold

- heat flux away from mold-metal interface = heat flux to mold-metal interface due to solidification

\[
\left(\frac{q}{A} \right)_{mold, x=0} = \left(\frac{q}{A} \right)_{casting}
\] \hspace{1cm} (9)

\[
\sqrt{\frac{k_m \rho_m c_m}{\pi t}} (T_m - T_0) = \rho_{\text{casting}} \Delta H_f \frac{dS}{dt}
\] \hspace{1cm} (10)
Heat Transfer Analysis: Insulating Molds

Integrating from \(S = 0 \) and \(t = 0 \) to \(S = S \) and \(t = t \)

\[
S = \frac{2}{\sqrt{\pi}} \left(\frac{T_m - T_0}{\rho_{\text{casting}} \Delta H_f} \right) \sqrt{k_m \rho_m c_m t} \tag{11}
\]

Also, \(S = V/A \)
Solidification time

\[
t = \left[\frac{\pi}{4} \left(\frac{\rho_{\text{casting}} \Delta H_f}{T_m - T_0} \right)^2 \frac{1}{k_m \rho_m c_m} \right] \left(\frac{V}{A} \right)^2
\] \tag{12}

- Subscripts
 - \(m = \text{mold} \)
 - \(\Delta H_f = \text{latent heat of solidification} \)
 - \(T_m = \text{metal melting temperature} \)
 - \(T_0 = \text{initial mold temperature} \)
Solidification time – Ex. 5-1

• You are sand casting a magnesium part with dimensions of 10 cm by 10 cm by 2.5 cm. The environment temperature is 25°C.
• Determine the time for the part to solidify if the metal is poured at its melting point.
• Determine the time for the part to solidify if the metal is poured at 50°C above its melting point, so as to alleviate the potential problem of short shots.
Solidification time – Ex. 5-2

<table>
<thead>
<tr>
<th>Material</th>
<th>Specific heat (kJ/kg-°C)</th>
<th>Density (kg/m³)</th>
<th>Thermal conductivity (W/m-K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand (solid)</td>
<td>1.16</td>
<td>1500</td>
<td>0.6</td>
</tr>
<tr>
<td>Magnesium (solid)</td>
<td>1.07</td>
<td>1700</td>
<td>154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Melting point (°C)</th>
<th>Latent heat of solidification (kJ/kg)</th>
<th>Specific heat (kJ/kg-K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium (liquid)</td>
<td>650</td>
<td>384</td>
<td>1.38</td>
</tr>
</tbody>
</table>
Solidification time – Ex. 5-3

- N.B. solidification is a phase change that occurs at the melting point
- Insulating mold:
 - $k_{\text{mold}} = 0.6 \ll k_{\text{casting}} = 154 \text{ W/m-K}$
 - $\alpha_{\text{mold}} = 3.4 \times 10^{-7} \ll \alpha_{\text{casting}} = 6.6 \times 10^{-5} \text{ m}^2/\text{s}$
- Solidification time:

$$t = \left[\frac{\pi}{4} \left(\frac{\rho_c \Delta H_f}{T_m - T_0} \right)^2 \frac{1}{k_m \rho_m c_m} \right] \left(\frac{V}{A} \right)^2$$
Solidification time – Ex. 5-4

- $\Delta H_f = 384$ kJ/kg
- $\rho_c = 1700$ kg/m3
- $T_m = 650^\circ$C
- $T_o = 25^\circ$C
- $k_m = 0.6 \times 10^{-3}$ kW/m-K
- $\rho_m = 1500$ kg/m3
- $c_m = 1.16$ kJ/kg-K
Solidification time – Ex. 5-5

- \(V = 0.1 \times 0.1 \times 0.025 = 2.5 \times 10^{-4} \, \text{m}^3 \)
- \(A = 2 \times (0.1 \times 0.1) + 4 \times (0.1 \times 0.025) = 0.03 \, \text{m}^2 \)
- \((V/A)^2 = 6.94 \times 10^{-5} \, \text{m}^2 \)
Solidification time – Ex. 5-6

• So

\[t = \left[\frac{\pi \left(\frac{1700 \times 384}{650 - 25} \right)^2}{4 \times \frac{1}{0.6 \times 10^{-3} \times 1500 \times 1.16}} \right] \left(6.94 \times 10^{-5}\right) \]

• \(t = 57 \text{ s} \)
Solidification time – Ex. 5-7

• Now, we have to take into account cooling the liquid from \((650 + 50)\, ^\circ\text{C}\) to \(650\, ^\circ\text{C}\)

• So, the latent heat of solidification \((\Delta H_f)\) will be increased by \(c_p\Delta T\)
Solidification time – Ex. 5-8

• For liquid magnesium
 – $c_p = 1.38 \text{ kJ/kg-K}$
 – $\Delta T = 50^\circ C$

• So

\[\Delta H_f = H_f + c_p \Delta T \]

\[= 384 + 1.38 \times 50 = 453 \text{ kJ/kg} \]
Solidification time – Ex. 5-9

• So

\[
t = \left[\frac{\pi \left(\frac{1700 \times 453}{650 - 25} \right)^2}{4} \right] \frac{1}{0.6 \times 10^{-3} \times 1500 \times 1.16} \left(6.94 \times 10^{-5} \right)
\]

\[
t = 79 \text{ s (a bit slower)}
\]
Heat Transfer Analysis: Insulating Molds

- Replacing S with (V/A), where $V =$ volume of metal solidified at time t and re-arranging

\[
t = \left[\frac{\pi}{4} \left(\frac{\rho_{\text{casting}} \Delta H_f}{T_m - T_0} \right)^2 \frac{1}{k_m \rho_m c_m} \right] \left(\frac{V}{A} \right)^2 \quad (13)
\]

\[
t = C_m \left(\frac{V}{A} \right)^2 \quad (14) \quad \text{Chvorinov’s Rule}
\]

- Chvorinov’s rule can be used for more complex castings to provide a first approximation of solidification time
Riser Design

• Riser design is based on Chvorinov’s rule
• Function of riser: to feed the mold cavity with molten metal in order to compensate for shrinkage

\[t_{\text{riser}} \geq t_{\text{mold}} \]

\[
\left(\frac{V_{\text{riser}}}{A_{\text{riser}}} \right)^2 \geq \left(\frac{V_{\text{mold}}}{A_{\text{mold}}} \right)^2
\]

\[
\left(\frac{V_{\text{riser}}}{A_{\text{riser}}} \right) \geq \left(\frac{V_{\text{mold}}}{A_{\text{mold}}} \right)
\]

• Design and place risers so that solidification begins in the casting and ends in the riser → shrinkage defects such as voids, porosity are limited to the riser
Riser Design Example

An open cylindrical riser must be designed for a sand mold. The part to be cast is a 125 mm x 125 mm x 25 mm plate. The foundryman knows from past experience that the total solidification time for casting this part is 2 min. It is required that the height-to-diameter ratio of the riser be 1. Find the dimensions of the riser so that its total solidification time is 30% longer than the casting.

Volume of casting, \(V_c = 125 \times 125 \times 25 = 390625 \text{ mm}^3 \)

Surface area of casting, \(A_c = 2 \times 125 \times 125 + 4 \times 125 \times 25 = 43750 \text{ mm}^2 \)

For defect-free casting it is required that \(t_{\text{riser}} \geq t_{\text{casting}} \)

Volume of riser, \(V_r = \pi D^2 h/4 = \pi D^3/4 \)

Surface area of riser across which heat transfer takes place, \(A_r = \pi Dh + \pi D^2/4 \)

(Note: no heat transfer across riser-casting boundary)

Problem states that \(t_{\text{riser}} = 1.3 \ t_{\text{casting}} \)

\((V_r/A_r)^2 = 1.3(V_c/A_c)^2 \rightarrow D = h = 50.74 \text{ mm} \)
Casting Defects

(a) Surface of casting
(b) Scar
(c) Blister
(d) Scab
(e) Gate
(f) Sprue
(g) Sand mold

Cold shut
Gate
Gate

ME 206: Manufacturing Processes & Engineering
Instructor: Ramesh Singh; Notes by: Prof. S.N. Melkote / Dr. Colton
Casting Defects

• Metallic projections
 – Flash: excess metal solidified outside mold cavity
 • Causes: insufficient clamping force, improper parting line

• Cavities (voids)
 – Shrinkage cavities: voids inside casting
 • Causes: contraction during solidification
 • Remedies: use similar (V/A) ratios, use gradually increasing section modulus toward riser, proper gating/riser design, use of chills
 – Blowholes: void on surface of casting
 • Causes: excessive gas entrapment, lack of adequate venting
 • Remedies: de-gas melt, add vents
Defects - Hot Tears

Casting

Hot tear

Core

Pouring cup

Sprue

Runner

Hot tear
Casting Defects

• Discontinuities
 – Hot tears: intercrystalline failure in casting that occurs at a high temperature within mold; usually forms in sections that solidify last and where geometrical constraints are present
 • *Causes*: large differences in section thickness, abrupt changes in section thickness, too many branching/connected sections, mold has high hot strength and stiffness
 • *Remedies*: through casting and mold redesign
 – Cold shut: incomplete fusion of two molten metal flows that meet inside the mold from opposite directions
 • *Causes*: insufficient superheat, inadequate risers
 • *Remedies*: increase superheat, add additional risers
Casting Defects

• Defective surface
 – Scabs: thin layer of molten metal that enters gaps in mold and solidifies
 • Causes: improper mold design

• Incomplete castings
 – Misrun: incomplete casting
 • Cause: insufficient superheat
 • Remedy: increase superheat

• Inclusions
 • Remedy: clean melt before pouring, improve strength of mold