Sheet Metal Forming - 1
Outline

• Introduction
• Key Factors
• Sheet Bending
Introduction

- **Sheet metal**: metallic sheet typically < 6 mm thick
- **Large surface area/volume ratio**
- **Applications**: auto body parts, beverage cans, utensils
Introduction

- Sheet forming processes: sheet bending, stamping, deep drawing, shearing, etc.
- Constant volume processes
- Basic deformation modes: bending and stretching

Deep drawing

Metal bending machine
Stamping

http://video.google.com/videoplay?docid=-6082773547960703710&q=metal+stamping&total=70&start=0&num=10&so=0&type=search&plindex=4
Process Variations

• Forming with flexible (rubber) tooling

• Hydroforming

Source: DeGarmo, Black, Kohser, 9th Ed., 2003
Process Variations

- Explosive forming

Source: DeGarmo, Black, Kohser, 9th Ed., 2003
Key Factors

- **Elongation**: tensile loads in stretching can cause necking \(\rightarrow \) limits uniform elongation. Sheet metal specimens tend to undergo “localized necking”. High values of ‘\(n \)’ and ‘\(m \)’ desirable to enhance total elongation.

\[
\sigma = K \varepsilon^n \\
\sigma = C \dot{\varepsilon}^m
\]

\(n \uparrow \rightarrow \) uniform elongation\(\uparrow \)

\(m \uparrow \rightarrow \) post-uniform elongation\(\uparrow \)

Source: Kalpakjian & Schmidt, 4th Ed., 2003
Key Factors

- **Yield-Point Elongation**: Yield point elongation is a function of the strain-rate and the grain size; increases as strain-rate \uparrow and grain size \downarrow

- **Characteristic of low carbon steels**

Source: Kalpakjian & Schmidt, 4th Ed., 2003
Key Factors

- **Anisotropy**: directional properties (of rolled sheet)

- **Causes**
 - crystallographic (from preferred grain orientation)
 - mechanical fibering (impurities, inclusions, etc. aligned in one direction)

- **Significance**: can lead to defects such as earing, wrinkling, or fracture

- **Severity of directionality measured by plastic strain ratio, \(R \), or normal anisotropy**

\[
R = \frac{\text{width strain}}{\text{thickness strain}} = \frac{\varepsilon_w}{\varepsilon_t} = \frac{\ln \left(\frac{w_0}{w_f} \right)}{\ln \left(\frac{t_0}{t_f} \right)} = \frac{\ln \left(\frac{w_0}{w_f} \right)}{\ln \left(\frac{w_f l_f}{w_0 l_0} \right)}
\]
Key Factors

- R varies with direction of tensile stress application relative to sheet rolling direction

- Average normal anisotropy, \bar{R}

$$\bar{R} = \frac{R_{0^\circ} + 2R_{45^\circ} + R_{90^\circ}}{4}$$

- Planar anisotropy, ΔR

$$\Delta R = \frac{R_{0^\circ} - 2R_{45^\circ} + R_{90^\circ}}{2}$$

$R_{\theta = 0, 45, 90}$ are the normal anisotropies in the sheet at the specified angles relative to the rolling direction of sheet.
Key Factors

- **Grain size**: impacts mechanical properties and appearance of surface of sheet
 - Finer grain size \rightarrow stronger the sheet, smoother surface

- **Residual stresses**: due to non-uniform deformation
 - Tensile stresses \rightarrow stress corrosion cracking, part distortion

Source: Kalpakjian & Schmidt, 4th Ed., 2003
Key Factors

- **Springback**: elastic recovery of sheet; common in bending operations

\[R_f > R_f \text{ and } \alpha_f < \alpha_i \]
Key Factors

- **Wrinkling**: due to compressive stresses acting in the plane of the sheet (common in deep drawing)

Source: www2.thefabricator.com
Sheet Metal Bending

- Process used to create parts with bends in them
- Bending also enhances rigidity of part
- Process carried out on a press brake machine
Sheet Metal Bending

Engineering strains (theoretical):

\[e_o = e_i = \frac{1}{\left(\frac{2R}{T}\right) + 1} \]

\[e_i = \text{strain in inner fiber}; \quad e_o = \text{strain in outer fiber} \]

\[\therefore \text{as } \frac{R}{T} \downarrow \quad e_o \uparrow \quad \rightarrow \text{cracking on outer bend surface} \]

Source: Kalpakjian & Schmidt, 4th Ed., 2003
Sheet Metal Bending

- **Minimum bend radius**: expressed as an integer \((n)\) multiple of the sheet thickness \(T\) i.e. \(nT\)
- Determined experimentally
- Theoretically,
 \[
 \text{Min. } \frac{R}{T} = \frac{50}{r} - 1
 \]
 \(r = \%\) reduction in area in a tension test

Expression for min. bend radius derived by equating true strain at fracture in tension, \(\varepsilon_f = \varepsilon_o\), true strain in outer fiber of bent sheet

Note that
\[
\varepsilon_f = \ln \left(\frac{A_0}{A_f} \right) = \ln \left(\frac{100}{100 - r} \right)
\]

and
\[
\varepsilon_0 = \ln (1 + e_0) = \ln \left(\frac{R + T}{R + 0.5T} \right)
\]
Factors Affecting Bendability

- Bendability can be enhanced by heating, applying compressive stresses in plane of sheet
- As $L \uparrow \rightarrow$ state of strain in outer fiber changes from uniaxial to biaxial \rightarrow decreases ductility and the Min. R/T ratio \uparrow

Source: Kalpakjian & Schmidt, 4th Ed., 2003
Factors Affecting Bendability

• Direction of Anisotropy

Source: Kalpakjian & Schmidt, 4th Ed., 2003
Factors Affecting Bendability

- Springback: results in larger bend radius and smaller bend angle, \(\alpha \)

Springback factor, \(K_s \)

\[
K_s = \frac{\alpha_f}{\alpha_i} = \frac{\left(2R_i/T\right)+1}{\left(2R_f/T\right)+1}
\]

\[
\frac{R_i}{R_f} = 4\left(\frac{R_iY}{ET}\right)^3 - 3\left(\frac{R_iY}{ET}\right) + 1
\]

Where \(Y \) is the yield strength and \(E \) is the Young’s modulus

Source: Kalpakjian & Schmidt, 4th Ed., 2003
Factors Affecting Bendability

- Springback compensation methods
 - Overbending
 - Heating \rightarrow lowers yield strength
 - Coining
 - Stretch bending

\[R_f > R_f \text{ and } \alpha_f < \alpha_i \]
Bending Force Calculation

- Max. bending force, P_{max} (neglecting friction)

$$P_{\text{max}} = \frac{kYLT^2}{W} \approx k \frac{(UTS)LT^2}{W}$$

$k = 1.2 \sim 1.3$ for V dies

$k = 0.3$ for wiping

$k = 2.4$ for U dies

Source: Kalpakjian & Schmidt, 4th Ed., 2003
Summary

• Sheet metal basics
• Key factors
• Sheet metal bending