Introduction to Manufacturing

Outline

- Contact details
- Course objectives
- Introductory remarks
- Grading policy
- Intro to manufacturing

Contact Details

- Prof. Ramesh Singh/Prof. S. S. Pande/Prof. S. S. Joshi
 - Room: Machine Tools Lab (Prof. Ramesh Singh)
 - E-mail:
 - rsingh@iitb.ac.in
 - Tel: 7507
 - Off. Hrs.: Fridays 4-5 p.m.
 - Also by appointment
 - Class website: http://www.me.iitb.ac.in/~ramesh/ME338/

Focus and Objectives of Course

- Learn the fundamentals of machining, optimization, non conventional machining, fixturing and metrology
- Develop first order mathematical descriptions for select processes to analyze and calculate important quantities for the unit processes e.g., forces, power, time, final shape, etc.
- Develop an understanding of the capabilities and limitations of the unit processes in terms of quality and productivity
- Emphasis on understanding the physical principles underlying these processes
- Apply this knowledge to manufacturing process selection, part design for manufacture and quality control.
- Encourage teamwork and group activity via group assignments and Project.

Introductory Remarks

- See second page of syllabus
 - Homework
 - Exams
 - Honor code
 - No cellphones on the desk !!!!
 - In silent mode in your bag/pocket

Grading Policy

Group Assignments in self-selected groups of 4 or less 10%

• Quizzes 10%

• Midterm 25%

• Term Project 15%

• End semester exam 40%

• Total 100%

Definition

- What is Manufacturing?
 - derived from the Latin word manufactus
 - manus = hand, factus = made
 - practical definition: process of converting or processing raw materials into usable products.

What is Materials Processing?

- Imparting changes in material:
 - Geometry
 - Material properties:
 - Strength
 - Hardness
 - Toughness
 - Etc.

Systems-Oriented Definition

- Manufacturing as a system or enterprise
 - "A series of interrelated activities and operations involving design, materials selection, planning, production, quality assurance, management, and marketing of discrete consumer and durable goods" (CAM-I)
 - a highly complex, interdependent activity that is dynamic in nature.

Design - Materials - Process Relationship

- Product design, materials selection, and materials processing are highly interrelated.
- For example:
 - weight reduction --> thin cross-sections --> mfg.
 problems
 - tight tolerance specs. --> specialized/high
 precision processes required --> increased cost
 - aluminum vs. steel beverage cans --> different metal forming needs.

Coke Cans over the Years

0.66 oz. (18.8 g) in 60's, 0.48 oz (13.5 g) in 90's

Classification of Unit Manufacturing Processes

Based on:

- process type e.g., shaping vs. non-shaping
- state of workpiece material e.g., solid or liquid
- processing energy e.g., mechanical, electrical,...

Classification of Unit Manufacturing Processes

- Shaping process classification
 - Mass conserving, dM ~ 0
 - examples: casting, bulk forming, powder processing
 - Mass reducing, dM < 0
 - examples: conventional and unconventional machining
 - Mass adding, dM > 0
 - examples: joining processes

Further sub-classification is possible based on processing energy and workpiece state considerations

Casting $(dM \sim 0)$

Fiorging $(dM \sim 0)$

Cutting (dM < 0)

Welding (dM > 0)

Summary

- Focus on:
 - Physical principles and analysis of process
 - Process Capabilities

- Teamwork will be encouraged
 - Homework
 - Term Paper

