Single Point Cutting Tool Geometry

Prof. S. S. Pande

Mechanical Engineering Department
Indian Institute of Technology, Bombay
Outline

• Tool Geometry, Tool Angles
• Systems for Tool nomenclature
 - ISO System - ORS/NRS
 - American Standards System - ASA
• Tool Angle Conversion: ISO ↔ ASA
 - Mathematical Basis
Basic Tool Shape

Wedge angle : 2β

Work

P

Tool

2β
Cutting Efficiency

\[P = 2R \sin \beta \]

Cutting Efficiency = \(\frac{R}{P} \)

\[\eta \propto \frac{1}{\sin \beta} \]
Orthogonal Cutting

![Diagram of orthogonal cutting tool and workpiece with labels for rake angle, flank angle, cutting edge, chip, and workpiece dimensions. velocity V is indicated.]
Orthogonal Cutting

Characteristics

• Cutting edge **Perpendicular** to cutting Velocity Vector
• Plain Strain (2D) phenomenon
• **No Spread** of material across
Oblique Cutting

Tool

Chip

λ

Work piece

V
Oblique Cutting

Characteristics

• Cutting edge at an angle (λ) to normal to velocity vector in the cutting plane

• Inclination angle λ
 - modifies Tool angles
 - governs Direction of chip flow

Stabler’s Law for Chip flow

$$n_c = k \cdot \lambda$$

$nc = \text{chip flow angle}$

$K = 0.8 - 1.0$
Free and Restricted Cutting

[Diagram showing the process of cutting with labels for Workpiece, Tool, and Feed Motion]
Chip Flow

Free

Restricted
Single Point Tool Geometry

- rake surface
- principal cutting edge
- principal flank (clearance) surface
- auxiliary cutting edge
- tool nose
- auxiliary flank (clearance) surface
Tool Nomenclature Systems

Tool in Hand

- ISO System: ORS/ NRS
 - Orthogonal/ Normal Reference System
- American Standards Association (ASA) system

Tool in Machine

- Tool /Insert setting in fixture
Tool Angle Reference Systems
ORS and ASA

\[\gamma_x \]

\[\gamma_o \]

\[\gamma_y \]

\[\lambda \]
Tool Reference Planes

- π_c: Cutting Plane
- π_o: Orthogonal Plane
- π_B: Basic Plane

Feed

$\pi_c \rightarrow \pi_o \rightarrow \pi_B$

\mathbf{v}: Axis
Orthogonal (ORS) Reference Planes

Trace of π_o

Trace of π_c

π_B

π_c π_o

π_B
Reference Planes - ORS

View in π_c

View in π_o

π_c, π_o, π_B
Reference Planes – ASA system
ASA Reference Planes

\[\pi_x \]

\[\pi_y \]
Tool Angles – ASA System

View in π_x Plane

View in π_y Plane
Tool Angles

\[\phi = \text{Plan Approach angle} \]
\[\phi_s = \text{Side cutting Edge angle} \]
\[\phi_e = \text{End cutting Edge angle} \]
\[\phi = 90 - \phi_s \]
Tool Designation

ASA System

\(\gamma_y, \gamma_x, \alpha_y, \alpha_x, \phi_e, \phi_s, r \)

- \(\gamma_y \): Back rake angle
- \(\gamma_x \): Side rake angle
- \(\alpha_y \): Front clearance angle
- \(\alpha_x \): Side clearance angle
- \(\phi_e \): End cutting Edge angle
- \(\phi_s \): Side cutting Edge angle
- \(r \): Nose radius (mm)
Tool Angle Conversion

ORS \rightarrow ASA

$(\gamma_o, \lambda) \rightarrow (\gamma_x, \gamma_y)$

\[
\begin{bmatrix}
tan\gamma_x \\
tan\gamma_y
\end{bmatrix} =
\begin{bmatrix}
sin\phi & -cos\phi \\
cos\phi & sin\phi
\end{bmatrix}
\begin{bmatrix}
tan\gamma_o \\
tan\lambda
\end{bmatrix}
\]

$\phi = \text{Plan Approach angle}$
Tool Angle Conversion

ASA \rightarrow ORS

$(\gamma_x, \gamma_y) \rightarrow (\gamma_o, \lambda)$

$$\begin{bmatrix} tan\gamma_o \\ tan\lambda \end{bmatrix} = \begin{bmatrix} sin\phi & cos\phi \\ -cos\phi & sin\phi \end{bmatrix} \begin{bmatrix} tan\gamma_x \\ tan\gamma_y \end{bmatrix}$$

$\phi = \text{Plan Approach angle}$
Does Orthogonal Plane π_o represent True rake angle?
Orthogonal and Normal Reference Planes
Tool Angle Conversion

ORS \rightarrow NRS

$\gamma_o \rightarrow \gamma_n$

$tan\gamma_n = tan\gamma_o \cdot Cos \lambda$
Tool in Machine System

Static angles on Tool/Insert change due to

• Setting in tool Holders/ Fixtures
• Tool/ Work relative motion.
Inserts in Tool Holder
Inserts and Tool Angles

<table>
<thead>
<tr>
<th>Insert</th>
<th>Tool cutting edge angle</th>
<th>Insert</th>
<th>Tool cutting edge angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td> 80°</td>
<td>W</td>
<td> 80°</td>
</tr>
<tr>
<td></td>
<td> 95°</td>
<td></td>
<td> 95°</td>
</tr>
<tr>
<td>V</td>
<td> 35°</td>
<td>T</td>
<td> ≤ 25°</td>
</tr>
<tr>
<td></td>
<td> 93°</td>
<td></td>
<td> ≤ 22°</td>
</tr>
<tr>
<td>T</td>
<td> 91°</td>
<td>S</td>
<td> 75°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tool Setup on Machine