ME 338
Tutorial\#1
HW\#3

1. You are performing a turning operation on a lathe, which reduces a part's diameter. The work piece has an initial diameter of 75 mm and a final diameter of 73 mm . The axial length of the cut is 225 mm . The motor is rated at 35 kW . It can operate with 90% efficiency. The arithmetic average (AA) surface finish is required to be 25 microns (1 micron $=10^{-6}$ meters). The arithmetic average $=\frac{f^{2}}{r 18 \sqrt{3}}$ (where f is feed/rev and r is tool radius). Use the average diameter to approximate the cutting speed for this entire problem. Determine the time to perform the cut.

For the metal being cut:
Specific cutting energy (u) $=1.5 \mathrm{~W}-\mathrm{s} / \mathrm{mm}^{3}$
Edge radius, $\mathrm{r}=0.1 \mathrm{~mm}$.
2. A $400-\mathrm{mm}$ long, 25 mm diameter titanium- alloy rod $\left(\mathrm{u}=3.5 \mathrm{~W}-\mathrm{s} / \mathrm{mm}^{3}\right)$ is being reduced in diameter to 23 mm by turning on a lathe. The spindle rotates at 3500 rpm , and the tool is traveling at an axial velocity (feed) of $0.08 \mathrm{~mm} / \mathrm{rev}$. Calculate the cutting speed, material removal rate, time of cut, power required, and cutting force.
3. During an orthogonal machining operation results are obtained as: Uncut chip thickness, $\mathrm{t}_{0}=0.25 \mathrm{~mm}$, chip thickness, $\mathrm{t}_{\mathrm{c}}=0.75 \mathrm{~mm}, \mathrm{w}=2.5 \mathrm{~mm}$ $\alpha=0 \mathrm{deg}, \mathrm{Fc}=950 \mathrm{~N}, \mathrm{Ft}=475 \mathrm{~N}$.
Determine the coefficient of friction between tool and chip
Determine the ultimate shear stress of work material
4. A steel bar is orthogonally cut with a tool with rake angle $=15 \mathrm{deg}$. The depth of cut $=1 \mathrm{~mm}$ and width of cut $=30 \mathrm{~mm}$. The Workpiece velocity is $2 \mathrm{~m} / \mathrm{s}$. The cutting force is 150 N and thrust force is 25 N . Determine the shear strength of cutting material and chip thickness. (Hint: Use Merchant's relationship: $\phi=\frac{\pi}{4}-\frac{(\beta-\alpha)}{2}$)
5. Mild steel is being orthogonally turned at an average cutting speed of $280 \mathrm{~m} / \mathrm{min}$ with a rake angle of 10^{0}. The depth of cut (change in radius before and after machining) is 2 mm and feed (undeformed chip thickness) is $0.2 \mathrm{~mm} / \mathrm{rev}$. The average value of the coefficient of friction between tool and chip is 0.5 and the shear stress τ_{s} of the work material is $400 \mathrm{~N} / \mathrm{mm}^{2}$. Determine:
a) Shear angle
b) The cutting and thrust forces

Merchant's equation,
$2 \phi+\beta-\alpha=\pi / 2$

